Question

A harmonic wave of amplitude 10.0 cm passes through a string. The harmonic wave has a...

A harmonic wave of amplitude 10.0 cm passes through a string. The harmonic wave has a frequency of 37.5 Hz. What is the average speed (not velocity!) of a point on the string as the wave is going through the string? Give your answer in units of m/s, to three significant figures.

Homework Answers

Answer #1

Avarage Speed of a point on the string as wave going through string is given by=4Af

Where A=Amplitude of the wave

f=frequency of the wave

The avarage speed of a point in the string for the given question thus 15.000m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A harmonic wave moving in the positive x direction has an amplitude of 2.1 cm, a...
A harmonic wave moving in the positive x direction has an amplitude of 2.1 cm, a speed of 38.0 cm/s, and a wavelength of 59.0 cm. Assume that the displacement is zero at x = 0 and t = 0. Calculate the displacement (in cm) due to the wave at x = 0.0 cm, t = 2.0 s. Calculate the displacement due to the wave at x = 10.0 cm, t = 20.0 s.
A string with both ends held fixed is vibrating in its third harmonic. The waves have...
A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 193 m/s and a frequency of 235 Hz. The amplitude of the standing wave at an antinode is 0.380 cm. a)Calculate the amplitude at point on the string a distance of 16.0 cm from the left-hand end of the string. b)How much time does it take the string to go from its largest upward displacement to its largest downward displacement at...
A string with both ends held fixed is vibrating in its third harmonic. The waves have...
A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 193 m/s and a frequency of 215 Hz . The amplitude of the standing wave at an antinode is 0.390 cm . Part A Calculate the amplitude at point on the string a distance of 17.0 cm from the left-hand end of the string. (m) Part B How much time does it take the string to go from its largest upward...
The speed of a wave in a string is given by v = sqrt(FT/μ), where FT...
The speed of a wave in a string is given by v = sqrt(FT/μ), where FT is the tension in the string and μ = mass/length of the string. A 2.00 m long string has a mass of 16.5 g. A 769 g mass is attached to the string and hung over a pulley . The end of the string is then vibrated at a frequency of 129 Hz. Find the wavelength for the wave generated. Give your answer in...
problem 24. Two overlapping, harmonic waves have the same frequency, speed, and amplitude (5.0 cm). They...
problem 24. Two overlapping, harmonic waves have the same frequency, speed, and amplitude (5.0 cm). They travel in the same direction in the same medium. They differ in phase by ?/2. What is the amplitude of the superposed wave? problem 28. A flutist assembles her flute in a room where the speed of sound is 342 m/s. She is in perfect tune with a 440 Hz tuning fork. A few minutes later, the room has warmed and the speed of...
A transverse sinusoidal wave on a string has a period T = 39.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 39.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? m (b) What is the phase constant? rad (c) What is the maximum transverse speed...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? (b) What is the phase constant? (c) What is the maximum transverse speed of the...
A transverse sinusoidal wave on a string has a period T = 35.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 35.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 3.50 m/s. (a) What is the amplitude of the wave? (b) What is the phase constant? (c) What is the maximum transverse speed of the...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of 2.5Hz. The speed of the waves on the string is 10 m/s. At t=0, the end from which the oscillations originate has a vertical displacement of 0m. a) Find the angular frequency, period, wavelength, and wave number. b) Write a wave function describing the wave. c) The linear mass density μ of the string is 0.300kg/m, and tension in the spring is maintained at...
A 2.0-mm-long string vibrates at its second-harmonic frequency with a maximum amplitude of 1.4 cmcm ....
A 2.0-mm-long string vibrates at its second-harmonic frequency with a maximum amplitude of 1.4 cmcm . One end of the string is at xxx =0cm=0cm. Find the oscillation amplitude at x =10cm. Express your answer to two significant figures and include the appropriate units. Find the oscillation amplitude at x =20cm. Express your answer to two significant figures and include the appropriate units. Find the oscillation amplitude at x =30cm. Express your answer to two significant figures and include the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT