Question

Answer the following questions on pressure (will the presser double, quadruple, halve, etc?): a) An ideal...

Answer the following questions on pressure (will the presser double, quadruple, halve, etc?):

a) An ideal gas is compressed to half of its initial volume while temperature is constant. What will happen to the pressure?

b) An ideal gas is expanded to double its initial volume while temperature is constant. What will happen to the pressure?

c) The temperature of an ideal gas is doubled while its volume is held constant. What will happen to the pressure?

d) The temperature of an ideal gas is halved while its volume is held constant. What will happen to the pressure?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following processes (treat all gases as ideal). I. The pressure of 1 mole of...
Consider the following processes (treat all gases as ideal). I. The pressure of 1 mole of oxygen gas is allowed to double at constant temperature. II. Carbon dioxide is allowed to expand at constant temperature to 10 times its original volume. III. The temperature of 1 mol of helium is increased 25 degrees C at constant pressure. IV. Nitrogen gas is compressed at constant temperature to half its original volume. V. A glass of water loses 100 J of energy...
Use these steps to answer the questions below: Step 1: A sample of monoatomic ideal gas,...
Use these steps to answer the questions below: Step 1: A sample of monoatomic ideal gas, initially at pressure P1 and volume V1, expands isothermally and reversibly to a final pressure P2 and volume V2 Step 2: The ideal gas is compressed isothermally back to its initial conditions using constant pressure. Give the equation needed to solve for the following Wsys (Step 1) = qsys (Step 2) =
. A container has n = 3 moles of a monoatomic ideal gas at a temperature...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature of 330 K and an initial pressure of three times the atmospheric pressure. The gas is taken through the following thermodynamic cycle: 1.- The gas is expanded isobarically (constant pressure) to Vf = 2.5∙Vi. 2.- The pressure of the gas is decreased isochorically (constant volume) to half of the initial value. 3.- The gas is compressed isobarically back to its initial volume. 4.- The...
5. An ideal gas occupies a volume of 7.0 L at STP. What is its gauge...
5. An ideal gas occupies a volume of 7.0 L at STP. What is its gauge pressure (in kPa) if the volume is halved and the absolute temperature is doubled? Show working equation with answer. Answer must be in kPa.
A container of gas at 2.8 atm pressure and 120∘C is compressed at constant temperature until...
A container of gas at 2.8 atm pressure and 120∘C is compressed at constant temperature until the volume is halved. It is then further compressed at constant pressure until the volume is halved again. 1.) What is the final pressure of the gas?(in atm) 2.)What is the final temperature of the gas?(in celsius)
QUESTION 3 Consider a fixed amount of an ideal gas undergoing an isobaric process ("iso" is...
QUESTION 3 Consider a fixed amount of an ideal gas undergoing an isobaric process ("iso" is the greek word for equal and used as a prefix means that the word following will remain the same, so here "isobaric" mean "constant pressure"). Under these conditions doubling the temperature T of the gas will Note: An ideal gas under these conditions is said to follow Gay-Lussac's Law (sometimes also called Charles' Law). Double the volume. Halve the volume. Not change the volume....
One mole of air is compressed from pressure P1 and temperature T1 at constant volume till...
One mole of air is compressed from pressure P1 and temperature T1 at constant volume till its pressure is doubled. Then it is expanded reversibly and isothermally to the original pressure, and finally restored to the original temperature by cooling at constant pressure. Sketch the path followed by the gas, on a P-V diagram and calculate the net work done by the gas.
20 moles of ideal helium gas are initially at standard temperature and pressure. The gas undergoes...
20 moles of ideal helium gas are initially at standard temperature and pressure. The gas undergoes a change such that the pressure is doubled and the temperature is halved. (a) What is the final volume in cubic meters? (b) lf the mass of a helium atom is 6.69 x 10'27 kg, what is the mean squared speed of the helium atoms in the final state?
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
A monatomic ideal gas is held in a thermally insulated container with a volume of 0.1000...
A monatomic ideal gas is held in a thermally insulated container with a volume of 0.1000 m3m3. The pressure of the gas is 111 kPakPa, and its temperature is 305 KK. To what volume must the gas be compressed to increase its pressure to 140 kPakPa? At what volume will the gas have a temperature of 290 KK?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT