Question

A horizontal spring with spring constant 2 N/m has one end connected to a wall while...

A horizontal spring with spring constant 2 N/m has one end connected to a wall while the other end is connected to a block resting on a frictionless surface. The mass of the block is 0.5 kg. The block is pulled 10 cm away from its equilibrium position and released. (a) Calculate the frequency of the resulting simple harmonic motion. (b) Calculate the maximum velocity of the block When the mass is 3 cm away from equilibrium it then strikes another identical mass which is placed on the frictionless surface. The two masses stick together on contact. (d) Calculate the frequency of the resulting simple harmonic motion. (e) Calculate the amplitude of the resulting simple harmonic motion.

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 23.0kg block at rest on a horizontal frictionless table is connected to the wall via...
A 23.0kg block at rest on a horizontal frictionless table is connected to the wall via a spring with a spring constant k=31.0N/m. A 2.30×10-2kg bullet travelling with a speed of 540m/s embeds itself in the block. What is the amplitude of the resulting simple harmonic motion? Recall that the amplitude is the maximum displacement from equilibrium.
1. A 0.12kg body is connected to a wall by a spring with a spring constant...
1. A 0.12kg body is connected to a wall by a spring with a spring constant of 570 N/m. The body experiences simple oscillatory motion when pulled from its equilibrium rightward by 0.080m and then released from rest. what is the displacement of the block after 0.20s. 2. An object connected to a spring (with a spring constant of 29.8 N/m) is displaced 0.232 meter from equilibrium on a frictionless horizontal tabletop; upon release, the object experiences simple harmonic motion...
A horizontal spring is attached to a wall at one end and a mass at the...
A horizontal spring is attached to a wall at one end and a mass at the other. The mass rests on a frictionless surface. You pull the mass, stretching the spring beyond the equilibrium position a distance A, and release it from rest. The mass then begins to oscillate in simple harmonic motion with amplitude A. During one period, the mass spends part of the time in regions where the magnitude of its displacement from equilibrium is greater than (0.17)A—...
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...
A horizontal spring attached to a wall has a force constant of k = 720 N/m....
A horizontal spring attached to a wall has a force constant of k = 720 N/m. A block of mass m = 1.90 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block...
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
A 5 kg block of wood connected to a horizontal spring (constant 130 N/m) is at...
A 5 kg block of wood connected to a horizontal spring (constant 130 N/m) is at rest on a frictionless plane. Bullet (50 mg) is fired at block and horizontal velocity is 25 m/s and bullet is stuck in it. The block goes through simple harmonic oscillation. What is the amplitude of resulting oscillation? What is the total mechanical energy of the block with the bullet inside? What is the magnitude of velocity of the block with the bullet when...
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m....
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m. After being pulled to its positive amplitude position and released, the resulting simple harmonic motion has a maximum velocity of 1.126 m/s. (a) Calculate the angular frequency of the oscillation.   rad/s (b) Calculate the minimum time elapsed for the mass to reach the 0.044 m position (distance from the equilibrium position).    s (c) Calculate the velocity of the mass at the time found in part (b).    m/s
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...