Question

At a distance of 0.206 cm from the center of a charged conducting sphere with radius...

At a distance of 0.206 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 430 N/C . What is the electric field 0.586 cmfrom the center of the sphere?

At a distance of 0.186 cm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 430 N/C . What is the electric field 0.604 cm from the axis of the cylinder?

At a distance of 0.190 cm from a large uniform sheet of charge, the electric field is 430 N/C . What is the electric field 1.06 cm from the sheet?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An isolated charged conducting sphere has a radius R = 11.0 cm. At a distance of...
An isolated charged conducting sphere has a radius R = 11.0 cm. At a distance of r = 25.0 cm from the center of the sphere the electric field due to the sphere has a magnitude of E = 4.90 ✕ 104 N/C. (a) What is its surface charge density (in µC/m2)? ___ µC/m2 (b) What is its capacitance (in pF)? ____ pF (c) What If? A larger sphere of radius 23.0 cm is now added so as to be...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius...
Consider an insulating sphere of radius 5 cm surrounded by a conducting sphere of inner radius 22 cm and outer radius 25 cm. Furthermore, suppose that the electric field at a point 13 cm from the center is measured to be 1540 N/C radially inward while the electric field at a point 44 cm from the center is 90 N/C radially outward. 1. Find the charge on the insulating sphere. Answer in units of C. 2.Find the net charge on...
A uniformly charged non-conducting sphere of radius 12 cm is centered at x=0. The sphere is...
A uniformly charged non-conducting sphere of radius 12 cm is centered at x=0. The sphere is uniformly charged with a charge density of ρ=+15 μC/m3. Find the work done by an external force when a point charge of +20 nC that is brought from infinity on the x-axis at a distance of 1 cm outside the surface of the sphere. Given the point charge held at its final position, what is the net electric field at x=5 cm on the...
A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of...
A net electric charge of 2.87 ?C is placed on a conducting sphere. The radius of the sphere is R = 20.5 cm. What is the magnitude of the electric field at a distance of d1 = 26.8 cm away from the center of the sphere? Tries 0/12 What is the magnitude of the electric field at a distance of d2 = 14.2 cm away from the center of the sphere? Tries 0/12 The same amount of electric charge is...
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant...
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant surface charge density of teta= 10 nC / m2. What will be the magnitude of the electric field produced by that sphere at a distance from the center of the sphere der = 23.5 cm?
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
The electric potential immediately outside a charged conducting sphere is 190 V, and 10.0 cm farther...
The electric potential immediately outside a charged conducting sphere is 190 V, and 10.0 cm farther from the center of the sphere the potential is 160 V. (a) Determine the radius of the sphere.   cm (b) Determine the charge on the sphere.   nC The electric potential immediately outside another charged conducting sphere is 220 V, and 10.0 cm farther from the center the magnitude of the electric field is 440 V/m. (c) Determine all possible values for the radius of...
The electric potential immediately outside a charged conducting sphere is 240 V, and 10.0 cm farther...
The electric potential immediately outside a charged conducting sphere is 240 V, and 10.0 cm farther from the center of the sphere the potential is 140 V. (a) Determine the radius of the sphere. __________cm (b) Determine the charge on the sphere. __________nC The electric potential immediately outside another charged conducting sphere is 270 V, and 10.0 cm farther from the center the magnitude of the electric field is 410 V/m. (c) Determine all possible values for the radius of...
A solid insulating sphere of radius a = 5 cm is fixed at the origin of...
A solid insulating sphere of radius a = 5 cm is fixed at the origin of a co-ordinate system as shown. The sphere is uniformly charged with a charge density ρ = -244 μC/m3. Concentric with the sphere is an uncharged spherical conducting shell of inner radius b = 13 cm, and outer radius c = 15 cm. 1)What is Ex(P), the x-component of the electric field at point P, located a distance d = 32 cm from the origin...
A nonconducting solid sphere of radius 9.10 cm has a uniform volume charge density. The magnitude...
A nonconducting solid sphere of radius 9.10 cm has a uniform volume charge density. The magnitude of the electric field at 18.2 cm from the sphere's center is 1.77  103 N/C. (a) What is the sphere's volume charge density? µC/m3 (b) Find the magnitude of the electric field at a distance of 5.00 cm from the sphere's center.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT