Question

Edit question An object with mass 0.220 kg is acted on by an elastic restoring force...

Edit question An object with mass 0.220 kg is acted on by an elastic restoring force with force constant 10.5 N/m. The object is set into oscillation with an initial potential energy of 0.150 J and an initial kinetic energy of 5.60×10−2 J.

From the problem (a), (b), and (c) I got

Amplitude 0.198m

Potential energy when the displacement was at half 5.15*10^-2 J

Displacement when Potential energy and Kinetic energies are equal 0.140m And I don't know

(d) What is the value of the phase angle ϕ if the initial velocity is positive and the initial displacement is negative?

Now I got 2.356 rad for the (d) but I can't sure

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object with mass 0.220 kg is acted on by an elastic restoring force with force...
An object with mass 0.220 kg is acted on by an elastic restoring force with force constant 10.0 N/m. The object is set into oscillation with an initial potential energy of 0.140 J and an initial kinetic energy of 7.00×10−2 J. a)What is the amplitude of oscillation? b)What is the potential energy when the displacement is one-half the amplitude? c)At what displacement are the kinetic and potential energies equal? d)What is the value of the phase angle ϕ if the...
An object with mass 0.220 kg is acted on by an elastic restoring force with force...
An object with mass 0.220 kg is acted on by an elastic restoring force with force constant 10.5 N/m . The object is set into oscillation with an initial potential energy of 0.130 Jand an initial kinetic energy of 5.10×10?2 J . a) What is the amplitude of oscillation? b) What is the potential energy when the displacement is one-half the amplitude? c) At what displacement are the kinetic and potential energies equal? d) What is the value of the...
An object with mass 0.160 kg is acted on by an elastic restoring force with force...
An object with mass 0.160 kg is acted on by an elastic restoring force with force constant 11.0 N/m . The object is set into oscillation with an initial potential energy of 0.140 J and an initial kinetic energy of 7.00×10−2 J . What is the value of the phase angle ϕ if the initial velocity is positive and the initial displacement is negative?
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m....
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m. This object reaches a maximum position of 12 cm from equilibrium. a) Determine the angular frequency of this mass. Then, determine the b) force, c) acceleration, d) elastic potential energy, e) kinetic energy, and f) velocity that it experiences at its maximum position. Determine the g) force, h) acceleration, i) elastic potential energy, j) kinetic energy, and k) velocity that it experiences at the...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
Question 1 (1 point) Which is not necessary in order to do work on an object...
Question 1 (1 point) Which is not necessary in order to do work on an object (use the scientific definition of work)? Question 1 options: There must be a change in momentum. A net force must be applied to the object. The object must undergo a displacement. A component of the force must be in the direction of motion. Question 2 (1 point) The change in gravitational potential energy for a 1.9 kg box lifted 2.2 m is: Question 2...