Question

A person with mass m1 = 80 kg stands at the left end of a uniform...

A person with mass m1 = 80 kg stands at the left end of a uniform beam with mass m2 = 100 kg and a length L = 4.0 m. Another person with mass m3 = 110 kg stands on the far right end of the beam and holds a medicine ball with mass m4 = 10 kg (assume that the medicine ball is at the far right end of the beam as well). Let the origin of our coordinate system be the left end of the original position of the beam as shown in the drawing. Assume there is no friction between the beam and floor.

A) What is the initial location of the center of mass of the system?

B) What is the initial velocity of the center of mass of the system?

C) The ball is thrown to the left end of the beam. Where is the center of mass now?

D) The two people now switch places on the beam. Where is the center of mass now?

E) Both people walk to the center of the beam. At what x-position do they end up?

please please help me

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A person with mass m1 = 64 kg stands at the left end of a uniform...
A person with mass m1 = 64 kg stands at the left end of a uniform beam with mass m2 = 91 kg and a length L = 2.7 m. Another person with mass m3 = 59 kg stands on the far right end of the beam and holds a medicine ball with mass m4 = 15 kg (assume that the medicine ball is at the far right end of the beam as well). Let the origin of our coordinate...
A person with mass m1 = 58 kg stands at the left end of a uniform...
A person with mass m1 = 58 kg stands at the left end of a uniform beam with mass m2 = 101 kg and a length L = 2.6 m. Another person with mass m3 = 64 kg stands on the far right end of the beam and holds a medicine ball with mass m4 = 9 kg (assume that the medicine ball is at the far right end of the beam as well). Let the origin of our coordinate...
A gymnast with mass m1 = 47 kg is on a balance beam that sits on...
A gymnast with mass m1 = 47 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 121 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. 1) What is the force the left support exerts on the beam? N 2) What is the force the right support...
A gymnast with mass m1 = 47 kg is on a balance beam that sits on...
A gymnast with mass m1 = 47 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 121 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. 1) What is the force the left support exerts on the beam? N 2) What is the force the right support...
A gymnast with mass m1 = 40 kg is on a balance beam that sits on...
A gymnast with mass m1 = 40 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 103 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. How much extra mass could the gymnast hold before the beam begins to tip? Now the gymnast (not holding any additional...
A gymnast with mass m1 = 46 kg is on a balance beam that sits on...
A gymnast with mass m1 = 46 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 118 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. 1.How much extra mass could the gymnast hold before the beam begins to tip? 2.Now the gymnast (not holding any additional...
A gymnast of mass 46.0kg stands on the left end of a uniform balance beam. The...
A gymnast of mass 46.0kg stands on the left end of a uniform balance beam. The beam is 5.00m long and has a mass of 250kg (excluding the mass of the two supports). Each support is 0.540m from its end of the beam. a) What are the magnitude and the direction of the force on the beam due to left support? Show your work and explain your reasoning. b) What are the magnitude and the direction of the force on...
A person with mass mp = 70 kg stands on a spinning platform disk with a...
A person with mass mp = 70 kg stands on a spinning platform disk with a radius of R = 2.04 m and mass md = 186 kg. The disk is initially spinning at ω = 2 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.68 m from the center). What is the total moment of inertia of the system about the center of the disk when the person stands on the...
A person with mass mp = 79 kg stands on a spinning platform disk with a...
A person with mass mp = 79 kg stands on a spinning platform disk with a radius of R = 1.83 m and mass md = 183 kg. The disk is initially spinning at ω = 1.8 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.61 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A person with mass mp = 75 kg stands on a spinning platform disk with a...
A person with mass mp = 75 kg stands on a spinning platform disk with a radius of R = 1.65 m and mass md = 187 kg. The disk is initially spinning at ω = 1.4 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.55 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...