Question

Part a. Starting from rest, a 14 kg box slides down a frictionless incline that is...

Part a.
Starting from rest, a 14 kg box slides down a frictionless incline that is 7 meters tall. What is the velocity of the box at the bottom of the incline?

Part b.
A thin hoop of mass 14 kg and radius 1.2 m rolls down an incline that is 7 meters tall. What is the velocity of the thin hoop at the bottom of the incline?

Part c.
A solid disk of mass 14 kg and radius 1.2 m rolls down an incline that is 7 meters tall. What is the velocity of the solid disk at the bottom of the incline?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of 5.0 m. A constant frictional force, introduced at point A, brings the block to rest at point B. If the coefficient of kinetic friction is 0.26, what is the distance between A and B?
starting at rest, a mass of 2.50 kg slides down an incline of 65.0 degrees. If...
starting at rest, a mass of 2.50 kg slides down an incline of 65.0 degrees. If the coefficient of kinetic friction is know to be 0.435, what is the speed of the mass after slinging 2.50 m down the incline
A solid cylinder rolls without slipping down an incline starting from rest. At the same time...
A solid cylinder rolls without slipping down an incline starting from rest. At the same time a box starts from rest at the same altitude and slides down the same incline with negligible friction. Which arrives at the bottom first? A. It is impossible to determine. B. the box C. the cylinder D. Both arrive at the same time.
A 10 kg box slides down a long, frictionless incline of angle 30°. It starts from...
A 10 kg box slides down a long, frictionless incline of angle 30°. It starts from rest at time t = 0 at the top of the incline at a height of 18 m above ground. (a) What is the original potential energy of the box relative to the ground? ---J (b) From Newton's laws, find the distance the box travels in 1 s and its speed at t = 1 s. ---m ---m/s (c) Find the potential energy and...
A block of mass 13.0 kg slides from rest down a frictionless 39.0° incline and is...
A block of mass 13.0 kg slides from rest down a frictionless 39.0° incline and is stopped by a strong spring with k = 2.70 ✕ 104 N/m. The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed? m
a hoop (or ring) starting from rest rolls down a smooth, flat incline from an intial...
a hoop (or ring) starting from rest rolls down a smooth, flat incline from an intial height of 0.55m. what is the speed of the hoop when it reaches the bottom of the incline?
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25. a. What is the speed of the box just before reaching the rough surface? b. What is the speed of the box just before...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down an incline, starting from rest from a height 1.0 m. a. What is the speed of the sphere when it reaches the bottom of the incline? b. From what height must a solid disk with the same mass and radius be released from rest to have the same velocity at the bottom? It also rolls without slipping.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT