Question

A bar of resistance 4.2 -Ω slides along a pair of vertical conducting poles separated by...

A bar of resistance 4.2 -Ω slides along a pair of vertical conducting poles separated by L=4.0 m and are electrically connected at the base. The poles and the base have negligible resistance. There is a constant magnetic field of strength B=0.15 T perpendicular to the plane of the poles, in the direction into the page.

If the bar is moving downward at v= 3 m/s, what emf is induced in the bar?

What is the induced current?

If the bar has just the right mass, the magnetic force will balance the bar’s weight and it willcontinue moving downward with constant velocity. Find that value of the mass m. Neglect friction and air resistance.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A conducting rod of mass M with negligible electrical resistance slides on a pair of frictionless,...
A conducting rod of mass M with negligible electrical resistance slides on a pair of frictionless, horizontal, parallel, conducting rails separated by a distance L. The two rods are connected by an electrical resistance of R. A uniform magnetic field B is directed vertically upward in the entire region. Looking from above, is the conventional current flowing cw or ccw?                                                                                                       (2 pt) Determine the current through the resistor.                                                                                          (4 pt) Find the force necessary to keep the rod moving at...
A conducting bar of length L and resistance R is free to slide on frictionless conducting...
A conducting bar of length L and resistance R is free to slide on frictionless conducting rails of negligible resistance. The circuit is immersed in a uniform and steady magnetic field of strength B. Initially the bar is at rest and the switch is open. The switch is closed. The battery provides a steady voltage V. a) What is the direction of the current at the instant the switch is closed? b) What is the magnitude of the current at...
A conducting bar of slides on frictionless conducting rails, falling under the influence of ordinary gravity....
A conducting bar of slides on frictionless conducting rails, falling under the influence of ordinary gravity. The rails are vertical and they sit in a powerful magnetic field which is perpendicular to the plane of the rails. The bar somehow maintains good electrical contact with the rails. At the top of the bar, the two rails are connected by a fixed resistor, R. a. As the bar falls, a current will be induced. Will this current be in the clockwise...
A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of...
A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 5.6 m/s perpendicular to a 0.57-T magnetic field. The resistance of the rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.2 m. A 1.1- resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potential energy that...
A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of...
A conducting rod is pulled horizontally with constant force F= 3.40 N along a set of rails separated by d= 0.380 m. A uniform magnetic field B= 0.600 T is directed into the page. There is no friction between the rod and the rails, and the rod moves with constant velocity v= 4.80 m/s. Using Faraday's Law, calculate the induced emf around the loop in the figure that is caused by the changing flux. Assign clockwise to be the positive...
You have a summer job working at a company developing systems to safely lower large loads...
You have a summer job working at a company developing systems to safely lower large loads down ramps. Your team is investigating a magnetic system by modeling it in the laboratory. The safety system is a conducting bar that slides on two parallel conducting rails that run down the ramp. The bar is perpendicular to the rails and is in contact with them. At the bottom of the ramp, the two rails are connected together. The bar slides down the...
A conducting rod spans a gap of length L = 0.23 m and acts as the...
A conducting rod spans a gap of length L = 0.23 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.55 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At2, where A = 4.5 m/s4. The resistance in the wire is R = 145 Ω. a. Express the magnitude of the magnetic...
Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting...
Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 5.9 m/s perpendicular to a 0.52-T magnetic field. The resistance of the rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.3 m. A 0.56- resistor is attached between the tops of the tracks. (a) What is the...
Problem 10:   A conducting rod spans a gap of length L = 0.186 m and acts...
Problem 10:   A conducting rod spans a gap of length L = 0.186 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.65 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At2, where A = 6.5 m/s4. The resistance in the wire is R = 145 Ω. Randomized VariablesL = 0.186 m...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT