Question

What should be the spring constant k of a spring designed to bring a 1,466.39 kg...

What should be the spring constant k of a spring designed to bring a 1,466.39 kg car to rest from a speed of 93.00 km/hr so that the occupants undergo a maximum acceleration of 4g?

Homework Answers

Answer #1

Given,

Mass of car is

Intial speed is

Acceleration is

As the car comes to rest, final speed is

Let the distance moved by spring before the car comes to rest be

then,

The spring force is

where k is the spring constant

we can write this as

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Calculate the spring constant ,k, for a spring, if the spring stretches by 0.2 m...
1. Calculate the spring constant ,k, for a spring, if the spring stretches by 0.2 m as a result of an applied force of 200N. 2. A 20 kg mass is attached to a spring with spring constant, K=100 N/m. The spring/mass system is stretched by 5cm, and then released from rest and allowed to oscillate back and forth A.) What is the amplitude of vibration in this system? B.) Calculate the acceleration of the mass at X=0. 3. In...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. (a) Find the frequency of the motion. Hz (b) Find the period. s (c) Find the amplitude. m (d) Find the maximum speed. m/s (e) Find the maximum acceleration. m/s2 (f) When does the object first reach its equilibrium position? ms What is its acceleration at this time? m/s2
8. A 0.40-kg mass is attached to a spring with a force constant of k =...
8. A 0.40-kg mass is attached to a spring with a force constant of k = 387 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 3.7 cm. Determine the following. (a) mechanical energy of the system J (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
A spring with no mass whose length= L and a spring constant is k stands vertically...
A spring with no mass whose length= L and a spring constant is k stands vertically on the ground. A mass m is dropped from a height h (h>L) so that it lands on top of the spring. Express your answers in terms of the given variables and the gravitational acceleration g. (a) What is the speed of the mass when it just reaches the spring? (b) What is the maximum compression (change in length) of the spring?
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
Consider a 10 kg block attached to a spring whose spring constant is k 1000 N/m,...
Consider a 10 kg block attached to a spring whose spring constant is k 1000 N/m, originally in equilibrium. The block is then given an initial speed of 4 m/s. The maximum deviation (in meters) from equilibrium achieved by the oscillating block is closest to
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m...
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the mass. cm/s (b) Determine the speed of the mass when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the mass when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the speed...
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350...
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350 N/m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. a) What is the angular frequency of the oscillation? b) What is the maximum speed of the object? c) At what position does this maximum speed occur? d) What is the acceleration of the object at x = 2.00 cm? e) What is the total energy of the mass-spring system?