Question

A uniform volume charge density of 70 µC/m3 is present throughout the region 6 mm ˂...

  1. A uniform volume charge density of 70 µC/m3 is present throughout the region 6 mm ˂ r ˂ 8 mm. Let ρv = 0 for   0 ˂ r ˂ 6 mm.
  1. Find the total charge inside the spherical surface r = 8 mm.

b.Find Dr at r = 8 mm.

Homework Answers

Answer #1

SOLUTION;

The uniform volume charge density= 70*10-6 C/m​​​​​​3

Where  

And

a) find the total charge inside the spherical surface = Q

And r = 8 mm = 0.008 m

According to question

The total charge inside spherical surface is = 8.679*10-11 C

B) find Dr when r =8 mm = 0.008 m

We know that

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Charge of uniform volume density ρ = 2.10 µC/m3 fills a nonconducting solid sphere of radius...
Charge of uniform volume density ρ = 2.10 µC/m3 fills a nonconducting solid sphere of radius 5.60 cm. What is the magnitude of the electric field (a) 1.80 cm and (b) 8.80 cm from the sphere's center?
The figure shows a spherical shell with uniform volume charge density ρ = 2.17 nC/m3, inner...
The figure shows a spherical shell with uniform volume charge density ρ = 2.17 nC/m3, inner radius a = 10.4 cm, and outer radius b = 3.0a. What is the magnitude of the electric field at radial distances (a) r = 0; (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = b, and (f) r = 3.00b?
A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge...
A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge is spread evenly throughout the volume of the sphere; ρ=Q/Volume). A spherical region in the center of the solid sphere is hollowed out and a smaller hollow sphere with a total positive charge Q (located on its surface) is inserted. The radius of the small hollow sphere R1, the inner radius of the solid sphere is R2, and the outer radius of the solid...
E field of a uniform and planar distribution of charge A uniform surface charge density of...
E field of a uniform and planar distribution of charge A uniform surface charge density of 5nC/m2 is present in the region x=0, -2<y<2 and all z. if ε=ε0, find E at: a) PA(3,0,0) b) PB(0,3,0)
A nonconducting solid sphere of radius 9.10 cm has a uniform volume charge density. The magnitude...
A nonconducting solid sphere of radius 9.10 cm has a uniform volume charge density. The magnitude of the electric field at 18.2 cm from the sphere's center is 1.77  103 N/C. (a) What is the sphere's volume charge density? µC/m3 (b) Find the magnitude of the electric field at a distance of 5.00 cm from the sphere's center.
A thick spherical shell of charge ? and uniform volume charge density ? > 0 is...
A thick spherical shell of charge ? and uniform volume charge density ? > 0 is bounded by radii ?1 and ?2 > ?1. Assume that ? = 0 at infinity. (a) Find the electric potential ?(r) as a function of distance ? from the centre of the distribution for ? > ?2. (b) Find the electric potential ? (?) as a function of distance ? for ?1 < ? < ?2. (c) Find the electric potential ? ? as...
1. Two uniform surface load densities of 6 and 2 ??/?2 are present at ? =...
1. Two uniform surface load densities of 6 and 2 ??/?2 are present at ? = 2 ?? ? 6??, respectively, in the free space. Assume V=0 at ? = 4 ?? and calculate V in: a) ? = 5?? b) ? = 7?? 2. Three spherical surfaces located at r= 2m, 4m and 6m have uniform surface charge densities of 20 ??/?2, -4 ??/?2 and ??0 , respectively, a) Find the electrical flux density D at r=1m, 3m and...
Charge is distributed uniformly throughout the volume of an infinitely long cylinder of radius R =...
Charge is distributed uniformly throughout the volume of an infinitely long cylinder of radius R = 12 cm. The volume charge density ρ is 3.6 nC/m3. Find the magnitude of the electric field E (a) inside the cylinder, a distance r = 6.6 cm from the cylinder axis, and (b) outside the cylinder, a distance r = 24 cm from the cylinder axis.
PROBLEM-4 Consider a thick insulating spherical shell of uniform volume charge density with total charge Q=10μC,...
PROBLEM-4 Consider a thick insulating spherical shell of uniform volume charge density with total charge Q=10μC, inner radius a=10mm, and outer radius b=80mm. a) Find the magnitude of electric field for r=8mm. (1pt) E=  N/C Upload your answer. b) Find the magnitude of electric field for r=55mm. (4pts) E=  N/C Upload your answer. c) Find the magnitude of electric field for r=120mm. (2pts) E=  N/C Upload your answer. d) Find the electric potential for r=55mm. (4pts) V=  V Upload your answer.
A solid spherical charge insulator of radius R carries a uniform charge density of p. A)...
A solid spherical charge insulator of radius R carries a uniform charge density of p. A) Derive an equation for the electric field as a function of the radical position inside the sphere using electric flux and a Gaussian surface of variable radius. B) Derive an equation for the electric field as a function of the radial position outside the sphere. C) Multiply your results from parts A and B with some test charge, are these results consistent with coulombs...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT