Question

A stone of mass 0.2 kg is tied to a string of length 0.8m. If your...

A stone of mass 0.2 kg is tied to a string of length 0.8m. If your hold the end of this string in your hand and

whirl the stone around a circle at the rate of 2 revolutions per second, what is the tension (Force) in the string? Ignore the gravity.

20 N

25 N

10 N

45 N

Homework Answers

Answer #1

Summary: the tension in the string would be equal to the centripetal force required for the circular motion of the stone.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stone is tied to a string (length = 0.880 m) and whirled in a circle...
A stone is tied to a string (length = 0.880 m) and whirled in a circle at the same constant speed in two different ways. First, the circle is horizontal and the string is nearly parallel to the ground. Next, the circle is vertical. In the vertical case the maximum tension in the string is 14.0% larger than the tension that exists when the circle is horizontal. Determine the speed of the stone.
If a stone is tied to one end of the string and whirled in vertical circle...
If a stone is tied to one end of the string and whirled in vertical circle such that it rotates with constant speed, then the tension in the string is minimum at
A stone of mass 500g is attached to a string of length 50 cm which will...
A stone of mass 500g is attached to a string of length 50 cm which will break if the tension exceed 20N. The stone is whirled in a vertical circle. The angular speed is slowly increased until the string breaks. Draw a diagram to show the forces acting on the stone in a vertical circle when it is at its higest and lowest points. By suggesting a reason for your answer, state in what position along the vertical circular path...
1. An object of mass 1.2 kg is attached to a string of 0.83 m. When...
1. An object of mass 1.2 kg is attached to a string of 0.83 m. When this object is rotated around a horizontal circle, it completes 15 revolutions in 9.6 seconds. a. What is the period (T) of this motion? b. What is the tangential velocity of the object? c. What is the tension on the string? Hint: The tension on the string is the centripetal force that causes the circular motion.
A model airplane of mass 0.4 kg is attached to a horizontal string and flies in...
A model airplane of mass 0.4 kg is attached to a horizontal string and flies in a horizontal circle of radius 5.9 m, making 2 revolutions every 7 s. (The weight of the plane is balanced by the upward “lift” force of the air on the wings of the plane.) The accelaration due to the gravity is 9.81 m/s2 . Find the speed of the plane. Answer in units of m/s. Find the tension in the string. Answer in units...
Two masses are tied together with a string and swung at a constant speed in a...
Two masses are tied together with a string and swung at a constant speed in a horizontal circle.   The inner string (connecting the center to the first mass) has a length of 72.0 cm and the outer string (connecting the first mass to the second mass) has a length of 45.0 cm. The inner object has a mass of m1= 540 g, the outer object has a mass of m2=360 g. The balls complete 5 rotations in 6.4 s.   Find...
A 2 kg mass is tied to a string and is being swung in a horizontal...
A 2 kg mass is tied to a string and is being swung in a horizontal circle. The mass has a constant angular velocity of 0.4 rad/s. The string has a Young’s modulus of 10 X 106 N/m2, and the string’s original length is 0.7 m long. The radius of the string is 0.05 cm. How much does the string stretch? You can think of the string as being shaped like a long, thin cylinder. Group of answer choices 5.6...
A mass of 3 kg is connected to a string of length 3.4 meters to form...
A mass of 3 kg is connected to a string of length 3.4 meters to form a yo-yo. It is swung in a vertical circle. The string breaks when the tension in the string is 89 Newtons. It happens to reach this tension on the side of the circle (halfway between the top and bottom) and the mass moves through midair at the velocity it was moving at the side when the string broke. What is the maximum vertical displacement...
A small ball of mass 61 g is suspended from a string of length 62 cm...
A small ball of mass 61 g is suspended from a string of length 62 cm and whirled in a circle lying in the horizontal plane. If the string makes an angle of 25◦ with the vertical, find the centripetal force experienced by the ball. The acceleration of gravity is 9.8 m/s 2 . Answer in units of N
object of mass m=3.8 kg which is connected to a string of length r=1.20 m. When...
object of mass m=3.8 kg which is connected to a string of length r=1.20 m. When the object is at the bottom of the circle it has velocity vb =10.2 m/s. What is the tension in the string at the top of the circle?