Question

A pendulum rod has a length L and has a mass m at the end. The...

A pendulum rod has a length L and has a mass m at the end. The pendulum is released from rest at an angle θ away from straight down. (In this problem you may neglect friction and mass of the pendulum arm.)

  1. What will the velocity of the mass be at the bottom?

  2. What will the tension in the pendulum arm be as it rotates through the bottom of its swing?

  3. A person holds the pendulum in place before it is released. What torque (about the pivot of the pendulum) must the person apply?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The length of a simple pendulum is 0.85 m and the mass of the particle (the...
The length of a simple pendulum is 0.85 m and the mass of the particle (the "bob") at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 7.75° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? rad/s (b) Using the position of the bob at its lowest...
A homogeneous rod of length L=1.47 mL=1.47 m and mass m=4.43 kgm=4.43 kg is pivoted about...
A homogeneous rod of length L=1.47 mL=1.47 m and mass m=4.43 kgm=4.43 kg is pivoted about one end. It starts at an angle of θ=27.8 ∘θ=27.8 ∘ with the vertical as shown in Figure 1. You may find it useful to use I=13mL2I=13mL2 for a rod pivoted about one end. The rod has just been released from rest at θ. 1) What is the magnitude of the torque acting on the rod in this position? 2) What is the angular...
A simple pendulum has a mass of 0.25 kg and a length of 1 m. It...
A simple pendulum has a mass of 0.25 kg and a length of 1 m. It is displaced through an angle of 30 degrees and then released. After a time, the maximum angle of swing is only 10 degrees. How much energy has been lost to friction?
A long, thin rod of length l and mass m hangs from a pivot point about...
A long, thin rod of length l and mass m hangs from a pivot point about which it is free to swing in a vertical plane like a simple pendulum. Calculate the total angular momentum of the rod about the pivot point as a function of its instantaneous angular frequency ω. Calculate the total kinetic energy of the rod.
A pendulum, with 1 kg mass attached with string of length 1 m is raised to...
A pendulum, with 1 kg mass attached with string of length 1 m is raised to an angle of 30 degrees below the horizontal and then released. Neglect frictional forces. 1. What is the height, h, initially of the pendulum bob? 2. What is the Potential Energy initially? What is the total Energy of the system? 3. What is the velocity of the pendulum when it reaches the bottom of its swing (i.e at 90° from horizontal as also shown...
The length of a simple pendulum is 0.68 m , the pendulum bob has a mass...
The length of a simple pendulum is 0.68 m , the pendulum bob has a mass of 295 g , and it is released at an angle of 11 ? to the vertical. Assume SHM. Part A With what frequency does it oscillate? Part B What is the pendulum bob's speed when it passes through the lowest point of the swing? Part C What is the total energy stored in this oscillation assuming no losses?
Two pendulums are swinging. One is a uniform rigid rod with a length of "l" and...
Two pendulums are swinging. One is a uniform rigid rod with a length of "l" and the other is a simple pendulum of relative length "l". Both have the same mass "m". Both are pulled back to the same angle of Theta relative to vertical and released simultaneously. a) Which one will reach the bottom of the swing first? b)Given the values l=80cm, Theta=30 degrees, and m=.200kg, what will be the speed of each pendulum as it swings through the...
In Figure 2, the pendulum consists of m1 kg slender rod AB and a m2 kg...
In Figure 2, the pendulum consists of m1 kg slender rod AB and a m2 kg wooden block with a dimension of a m (length) x b m (height). The m3 kg bullet having a velocity of V m/s is fired into the edge of the wooden block. Analyze the maximum angle of swing before the pendulum momentarily stops. The wooden block is originally at rest. Neglect the mass of the slender rod AB. Use appropriate numerical values to explain...
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α 
The figure shows a thin rod, of length L = 2.10 m and negligible mass, that...
The figure shows a thin rod, of length L = 2.10 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A heavy ball of mass m = 7.10 kg is attached to the other end. The rod is pulled aside to angle θ0 = 5.3° and released with initial velocity v→0 = 0. (a) What is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain...