Question

An electron in a hydrogen atom is in a state with n = 3.Find the orbital...

An electron in a hydrogen atom is in a state with n = 3.Find the orbital angular momentum and z component of the orbital angular momentum for each possible value of ℓ and m for the electron. (Use the following as necessary: ℏ. Enter your answers as comma-separated lists. Give exact answers. Do not round.)

L =

Lz =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron in a hydrogen atom is in a state with n = 5. Find the...
An electron in a hydrogen atom is in a state with n = 5. Find the orbital angular momentum and z component of the orbital angular momentum for each possible value of ℓ and m for the electron. (Use the following as necessary: ℏ. Enter your answers as comma-separated lists. Give exact answers. Do not round.) L = ______ Lz = _______
For the 3d state (orbital) of the hydrogen atom, the principal quantum number n=3. The orbital...
For the 3d state (orbital) of the hydrogen atom, the principal quantum number n=3. The orbital quantum number l = 2. For an electron with these quantum numbers, what is the smallest angle (in degrees) that an electron's spin axis (angular momentum axis) can make with respect to an applied magnetic field?
what feature of the operators H(Hamiltonian) L^2 (orbital angular momentum)and Lz(z-component of the orbital angular momentum)makes...
what feature of the operators H(Hamiltonian) L^2 (orbital angular momentum)and Lz(z-component of the orbital angular momentum)makes it possible for E, L^2 and Lz to have definite non-zero values in the coulomb model hydrogen atom state? discuss whether any state of a hydrogen atom can exist that has definite non-zero values for E, L^2 and Lx
A hydrogen atom stays in the 3rd excited state (n = 4). Consider of the quantum...
A hydrogen atom stays in the 3rd excited state (n = 4). Consider of the quantum behavior of the electron, but ignore the quantum behavior of the nucleus. (a) What are the possible values for the quantum number l and what are the corresponding orbitals? Write down the magnitude of each orbital angular momentum (in units of ħ). (b) For each value of l, what are possible values for the quantum number ml and the magnitude of the z component...
-Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen...
-Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen atom for states with a principal quantum number of 8. Express your answer in units of ℏ to three significant figures. -Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen atom for states with a principal quantum number of 48. Express your answer in units of ℏ to three significant figures. -Calculate the magnitude of the maximum...
According to Schrodinger's model for the hydrogen atom given that the z-component of the orbital angular...
According to Schrodinger's model for the hydrogen atom given that the z-component of the orbital angular momentum of the electron is 4hbar. What is the lowest energy level (in eV) that can be measured for such an electron?
Calculate the magnitude of the maximum orbital angular momentum Lmax L m a x for an...
Calculate the magnitude of the maximum orbital angular momentum Lmax L m a x for an electron in a hydrogen atom for states with a principal quantum number of 5. Express your answer in units of ℏ ℏ to three significant figures. Calculate the magnitude of the maximum orbital angular momentum LmaxLmax for an electron in a hydrogen atom for states with a principal quantum number of 21. Express your answer in units of ℏℏ to three significant figures. Calculate...
A hydrogen atom is in the 6g state. Determine the principal quantum number. Determine the energy...
A hydrogen atom is in the 6g state. Determine the principal quantum number. Determine the energy of the state. Determine the quantum number ℓ. Determine the orbital angular momentum. Determine the possible values for the magnetic quantum number.
The electron in a hydrogen atom with an energy of -0.544 eV is in a subshell...
The electron in a hydrogen atom with an energy of -0.544 eV is in a subshell with 18 states. A. What is the principal quantum number, n, for this atom? n = b. What is the maximum possible orbital angular momentum this atom can have? L= c. Is the number of states in the subshell with the next lowest value of ℓℓ equal to 16, 14, or 12? d. explain part (c.)
The orbital quantum number for the electron in a hydrogen atom is = 3. What is...
The orbital quantum number for the electron in a hydrogen atom is = 3. What is the smallest possible value (algebraically) for the total energy of this electron? Give your answer in electron volts.