Question

A solid sphere of radius 50.0 cm has a total positive charge of 25.0 μC uniformly...

A solid sphere of radius 50.0 cm has a total positive charge of 25.0 μC uniformly distributed throughout its volume.
(a) Calculate the magnitude of the electric field at a point 10.0 cm from the center of the sphere.
(b) Calculate the magnitude of the electric field at a point 75.0 cm from the center of the sphere.
c) A proton enters a region containing a uniform electric field
of magnitude 1.00 x 10^4 N/C. The separation between the
plates is 1.00 m. If the entrance speed is 3.0 x 10^5 m/s, what
is the exit speed of the proton? Hint: Neglect the effect of
gravity.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid sphere of radius 40.0 cm has a total positive charge of 37.6 µC uniformly...
A solid sphere of radius 40.0 cm has a total positive charge of 37.6 µC uniformly distributed throughout its volume. Calculate the magnitude of the electric field at the following distances. (a) 0 cm from the center of the sphere kN/C (b) 10.0 cm from the center of the sphere kN/C (c) 40.0 cm from the center of the sphere kN/C (d) 65.0 cm from the center of the sphere kN/C
A solid sphere of radius 40.0 cm has a total positive charge of 38.4 µC uniformly...
A solid sphere of radius 40.0 cm has a total positive charge of 38.4 µC uniformly distributed throughout its volume. Calculate the magnitude of the electric field at the following distances. (a) 0 cm from the center of the sphere kN/C (b) 10.0 cm from the center of the sphere kN/C (c) 40.0 cm from the center of the sphere kN/C (d) 63.5 cm from the center of the sphere kN/C
A nonconducting solid sphere of radius 2.80 cm carries a uniformly distributed positive charge of 6.60×10-9...
A nonconducting solid sphere of radius 2.80 cm carries a uniformly distributed positive charge of 6.60×10-9 C. Calculate the magnitude of the electric field at a point 1.60 cm away from the center of the sphere. Calculate the magnitude of the electric field at a point 3.60 cm away from the center of the sphere. Assume that the sphere is conducting. Calculate the magnitude of the electric field at a point 1.60 cm away from the center of the sphere....
A uniformly charged ring of radius 10.0 cm has a total charge of 94.0 μC. Find...
A uniformly charged ring of radius 10.0 cm has a total charge of 94.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm î MN/C (b) 5.00 cm î MN/C (c) 30.0 cm î MN/C (d) 100 cm î MN/C
A uniformly charged ring of radius 10.0 cm has a total charge of 66.0 μC. Find...
A uniformly charged ring of radius 10.0 cm has a total charge of 66.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm Incorrect: Your answer is incorrect. î MN/C (b) 5.00 cm î MN/C (c) 30.0 cm î MN/C (d) 100 cm î MN/C
A soild conducting sphere of radius 10.0cm has a total positive charge of 8.00 uC. Thus,...
A soild conducting sphere of radius 10.0cm has a total positive charge of 8.00 uC. Thus, the charge is uniformly distributed on the sphere. (a) Find the direction and the magnitude of the electric field at 15.0 cm from the center of the center. (b) Find the direction and the magnitude of the electric field at 5.00 cm from the center of the sphere. (c) Calculate the electric potential at 15.0 cm from the center of the sphere relative to...
A rod 12.0 cm long is uniformly charged and has a total charge of -25.0 µC....
A rod 12.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 36.0 cm from its center. magnitude=?
A solid sphere of radius 50.0 cm has a charge of 12.0 uC.  If the charge density...
A solid sphere of radius 50.0 cm has a charge of 12.0 uC.  If the charge density varies with radial distance according to the equation p=kr, where k is a constant: A) find the electric field at 30.0 cm from the sphere's center. B) find the electric field at 60.0 cm from the sphere's center.
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere...
An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere of radius R = 5.0cm. The magnitude of the bold E with bold rightwards harpoon with barb upwards on top-field at a point 10.0cm from the center of the sphere is given to be 4.5x10^6 N/C. a. What is the value (in units of μC) of charge Q? b. What is the magnitude of the -field at the surface of the sphere? c. What...
15. A solid conducting steel sphere of radius Rball= 10.0 cm is concentric with a hollow,...
15. A solid conducting steel sphere of radius Rball= 10.0 cm is concentric with a hollow, uniformly charged, nonconducting spherical shell of plastic with an inner radius Rinner = 20.0 cm and outer radius Router = 30.0 cm. The steel sphere has net charge qball = 40.0 nC, while the spherical shell has net charge qshell = -50.0 nC. Determine the magnitude of the electric field at the following distances from the center:(a) r = 5.00 cm. (b) r =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT