Question

A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They...

A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They are then disconnected from the voltage source and are connected together, positive plate to positive plate and negative plate to negative plate. Find the energy lost when the connections are made. ________J

I got 9.735e-4 but it was incorrect

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They...
A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They are then disconnected from the voltage source and are connected together, positive plate to positive plate and negative plate to negative plate. Find the energy lost when the connections are made. ________J
A 140 pF capacitor and a 560 pF capacitor are both charged to 4.2 kV. They...
A 140 pF capacitor and a 560 pF capacitor are both charged to 4.2 kV. They are then disconnected from the voltage source and are connected together, positive plate to positive plate and negative plate to negative plate. Find the energy lost when the connections are made. ___________J
A 50-pF capacitor and a 200-pF capacitor are both charged to 1.70 kV. They are then...
A 50-pF capacitor and a 200-pF capacitor are both charged to 1.70 kV. They are then disconnected from the voltage source and are connected together, positive plate to negative plate and negative plate to positive plate. (a) Find the resulting potential difference across each capacitor. V50 pF = kV V200 pF = kV (b) Find the energy lost when the connections are made. µJ
A 140-pF capacitor and a 560-pF capacitor are both charged to 2.10 kV. They are then...
A 140-pF capacitor and a 560-pF capacitor are both charged to 2.10 kV. They are then disconnected from the voltage source and are connected together, positive plate to negative plate and negative plate to positive plate. (a) Find the resulting potential difference across each capacitor. V140 pF = _____kV V560 pF = _____kV (b) Find the energy lost when the connections are made. _____µJ
A 27-pF capacitor is charged to 5.0 kV and then removed from the battery and connected...
A 27-pF capacitor is charged to 5.0 kV and then removed from the battery and connected to an uncharged 70-pF capacitor. (a) What is the new charge on each capacitor? Q27 = nC Q70 = nC (b) Find the energy stored in the 27-pF capacitor before it is disconnected from the battery, and the energy stored in the capacitors after they are connected to each other. Ui = µJ Uf = µJ c.Does the stored energy increase or decrease when...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor that are connected in parallel. The three capacitors are connected to a 26 V battery. A) What is the equivalent capacitance of the circuit? B) How much charge is on the 13 pF capacitor? C) What is the potential difference across the 5 pF capacitor? D) A parallel plate capacitor of plate area A and plate separation d is fully charged using a battery...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor that are connected in parallel. The three capacitors are connected to a 26 V battery. (Show all your work!) A) What is the equivalent capacitance of the circuit? B) How much charge is on the 13 pF capacitor? C) What is the potential difference across the 5 pF capacitor? D) A parallel plate capacitor of plate area A and plate separation d is fully...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0 kV potential difference. The charged capacitors are then disconnected from the source and connected to each other with terminals of like sign together. Find the charge on each capacitor (in mC) and the voltage across each capacitor (in V).
A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged...
A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged to 525 V . a) These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor? b) What will be the charge on each capacitor? c) What is the voltage for each capacitor if plates of opposite sign are...
Consider a parallel plate capacitor with plate dimensions of 10 cm x 10 cm and a...
Consider a parallel plate capacitor with plate dimensions of 10 cm x 10 cm and a gap spacing of 2.00 cm. The capacitor is connected to a battery supplying a voltage across the capacitor of 2.00 kV. After the capacitor is fully charged, the battery is disconnected. A dielectric material is then inserted into the vacuum space to completely fill the capacitor. This result in a decrease of the capacitor voltage to 1.00 kV. a.Find the vacuum electric field between...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT