Question

Two parallel plates of area 77 cm^2 have equal but opposite charges of 0.0000005899 C. Within...

Two parallel plates of area 77 cm^2 have equal but opposite charges of 0.0000005899 C. Within the dielectric material filling the space between the plates, the electric field is 874,330 V/m. Find the dielectric constant of the material.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two parallel plates have equal and opposite charges. When the space between the plates is evacuated,...
Two parallel plates have equal and opposite charges. When the space between the plates is evacuated, the electric field is E= 3.50×105 V/m . When the space is filled with dielectric, the electric field is E= 2.10×105 V/m . a)What is the charge density on each surface of the dielectric?         b)What is the dielectric constant?        
Consider the two parallel plates shown below containing equal and opposite charges. The top plate is...
Consider the two parallel plates shown below containing equal and opposite charges. The top plate is the positively charged plate. The potential difference between the plates is 20 V, and they are 0.50 m apart. Point A is a point in space 0.10 m above the bottom plate. Points B and C lie on a line 0.15 m below the top plate. In the space below the figure, answer the following questions. Calculate the potential difference between points A and...
A parallel plate capacitor is made from two plates 7 cm^2 in area, with a plate...
A parallel plate capacitor is made from two plates 7 cm^2 in area, with a plate separation of 3 mm. The capacitor is fully charged across a 30 V battery, and then disconnected. How much charge is on the capacitor? Now material with a dielectric constant of 30 is inserted to fill the space between the plates, (with the battery disconnected), What is the charge on the capacitor? What is the energy stored in the capacitor? What the field between...
A parallel plate capacitor has plates with equal and opposite charges ±Q , which are initially...
A parallel plate capacitor has plates with equal and opposite charges ±Q , which are initially separated by a distance d . The capacitor is not connected to a battery. Then, the plates are moved farther apart so they are now separated by a distance 2d and also a dielectric with dielectric constant κ=2 that fills the entire space in the gap is inserted. What happens to the stored energy U and the potential difference between the plates ΔV=V+−V− after...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a distance of 45.0 mm , and the potential difference between them is 365 V (A) What is the magnitude of the electric field (assumed to be uniform) in the region between the plates? (B) What is the magnitude of the force this field exerts on a particle with a charge of 2.10 nC ? (C) Use the results of part (b) to compute the...
A parallel-plate capacitor has plates of area 0.16 m2 and a separation of 1.20 cm. A...
A parallel-plate capacitor has plates of area 0.16 m2 and a separation of 1.20 cm. A battery charges the plates to a potential difference of 180 V and is then disconnected. A dielectric slab of thickness 0.4 cm and dielectric constant K=3 is then placed symmetrically between the plates. a) What is the capacitance before the slab is inserted? b) What is the capacitance with the slab in place? c) What is the free charge q before the slab is...
. If a capacitor has opposite 5.2 C charges on the plates, and an electric field...
. If a capacitor has opposite 5.2 C charges on the plates, and an electric field of 2.0 kV/mm is desired between the plates, what is each plate area?
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
Two large parallel plates each have an area of 250 cm^2 . When the two plates...
Two large parallel plates each have an area of 250 cm^2 . When the two plates are separated by air, the system has a capacitance of 2.1 nF . The first plate has a charge of +20 nC and the second plate has a charge of −20 nC . (a) What is the separation between the two plates? (b) What is the potential difference between the two plates? Which plate has a larger potential? (c) What is the magnitude and...
1. Find the capacitance of a parallel plate capacitor having plates of area 3 m2 that...
1. Find the capacitance of a parallel plate capacitor having plates of area 3 m2 that are separated by 0.08 mm of Teflon. Give answer in terms of 10-7 F. 2. What is the average power output of a heart defibrillator that dissipates 472 J of energy in 7 ms? Give answer in terms of 104 W. 3. What is the strength of the electric field between two parallel conducting plates separated by 1 cm and having a potential difference...