Question

A spring has a mass of 1 kg and its damping constant is c = 10....

A spring has a mass of 1 kg and its damping constant is c = 10. The spring starts from its equilibrium position with a velocity of 1 m/s. Graph the position function for the following values of the spring constant k: 10, 20, 25, 30, 40. What type of damping occurs in each case

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spring-mass-dashpot system has a mass of 1 kg and its damping constant is 0.2 N−Sec...
A spring-mass-dashpot system has a mass of 1 kg and its damping constant is 0.2 N−Sec m . This mass can stretch the spring (without the dashpot) 9.8 cm. If the mass is pushed downward from its equilibrium position with a velocity of 1 m/sec, when will it attain its maximum displacement below its equilibrium?
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for...
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for the system is 6 N-sec/m. If the mass is moved 12/5 m to the left of equilibrium and given an initial rightward velocity of 62/5 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t)= The damping factor is: The quasiperiod is: The quasifrequency is:
A 5​-kg mass is attached to a spring with stiffness 225 N/m. The damping constant for...
A 5​-kg mass is attached to a spring with stiffness 225 N/m. The damping constant for the system is 30√5 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 3 ​m/sec, what is the maximum displacement from equilibrium that it will​ attain? ​(Type an exact​ answer, using radicals as​ needed.)
An object has a mass of 2 Kg. It is attached to a spring that has...
An object has a mass of 2 Kg. It is attached to a spring that has a constant of K=10 N/m and also a damping force of 4 times the velocity. The object begins at 1 m below equilibrium and has a beginning velocity of 1 m/s toward equilibrium( upward) . Solve for the position x(t). Is the spring overdamped, underdamped or critically damped?
A small object of mass 1 kg is attached to a spring with spring constant 2...
A small object of mass 1 kg is attached to a spring with spring constant 2 N/m. This spring mass system is immersed in a viscous medium with damping constant 3 N· s/m. At time t = 0, the mass is lowered 1/2 m below its equilibrium position, and released. Show that the mass will creep back to its equilibrium position as t approaches infinity.
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for...
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for the system is 6 ​N-sec/m. If the mass is moved 3/4 m to the left of equilibrium and given an initial rightward velocity of 1 ​m/sec, determine the equation of motion of the mass y(t) = and give its damping​ factor, quasiperiod, and quasifrequency.
An oscillator of mass 2 Kg has a damping constant of 12 kg/sec and a spring...
An oscillator of mass 2 Kg has a damping constant of 12 kg/sec and a spring constant of 10N/m. What is its complementary position solution? If it is subject to a forcing function of F(t)= 2*sin(2t) what is the equation for the position with respect to time? Equation 2(x2) + 12(x1) + 10(x) = 2*sin(2t); x2 is the 2nd derivative of x; x1 is the 1st derivative of x.
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping...
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping and that the mass is set in motion from 0.5 m above its equilibrium position with a downward velocity of 2 m/s, determine the position of the mass at any time. Find the amplitude, the frequency, the period and the phase shift of the motion.
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences...
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences friction, which acts as a force opposite and proportional to the velocity, with magnitude 2 N for every m/s of velocity. The spring is stretched 1 meter and then released. (a) Find a formula for the position of the mass as a function of time. (b) How much time does it take the mass to complete one oscillation (to pass the equilibrium point, bounce...
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant...
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant for the spring is 16\sqrt{3} N - sec/m. If the mas is pulled 30 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT