Question

Mass m = 0.1 kg moves to the right with speed v = 0.57 m/s and...

Mass m = 0.1 kg moves to the right with speed v = 0.57 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.75 of its original kinetic energy. How much impulse (in units of N sec) does the mass originally at rest receive during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You will probably need to use the quadratic formula to solve the resulting equations. VR must be greater than VL since the masses can't pass through each other!

I keep getting different answers! HELP!!!!

Homework Answers

Answer #1

Please rate us by giving me a like or thumb because it motivates me to do more work.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Mass m = 0.1 kg moves to the right with speed v = 0.56 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.56 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.79 of its original kinetic energy. How much impulse (in units of N sec) does the mass originally at rest receive during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You will probably need to use the...
Mass m = 0.1 kg moves to the right with speed v = 0.48 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.48 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.88 of its original kinetic energy. If the masses remain in contact for 0.01 secs while colliding, what is the magnitude of the average force in N between the masses during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
Mass ( m 1 = 1 kg ) initially moving at a speed of 10 m/s...
Mass ( m 1 = 1 kg ) initially moving at a speed of 10 m/s , collides in a perfectly elastic collision with ( m 2 = 3 kg ) initially at rest. After the collision m 2 moves with a speed of 4 m/s at an angle of while m 1 moves with a final speed v f 1 at an angle Determine the final speed vf1 and the angles θ, α.
A piece of putty of mass m = 0.75 kg and velocity v = 2.5 m/s...
A piece of putty of mass m = 0.75 kg and velocity v = 2.5 m/s moves on a horizontal frictionless surface. It collides with and sticks to a rod of mass M = 2 kg and length L = 0.9 m which pivots about a fixed vertical axis at the opposite end of the rod as shown. What fration of the initial kinetic energy of the putty is lost in this collision? KElost/KEinitial =
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A 2.2 kg ball moves to the right with a speed of 6.5 m/s and collides...
A 2.2 kg ball moves to the right with a speed of 6.5 m/s and collides with a 1.8 kg ball moving at 1.8 m/s in the opposite direction. If this is a completely elastic collision determine the velocity of each ball.
A puck with a mass of 1.2 kg moves with a velocity of 5 m/s in...
A puck with a mass of 1.2 kg moves with a velocity of 5 m/s in the x-direction. It collides with a 1.6 kg puck which is initally stationary. After the collision, the second puck moves at a velocity of 1.44 m/s at an angle of 33 degrees below the x axis. A) What is the angle of the first puck after the collision? B)What is the velocity of the first puck after the collision?
A Ping-Pong ball moving East at a speed of 4 m/s collides with a stationary bowling...
A Ping-Pong ball moving East at a speed of 4 m/s collides with a stationary bowling ball. The Ping-Pong ball bounces back to the West, and the bowling ball moves very slowly to the East. Which object experiences the greater magnitude impulse during the collision? A car hits another and the two bumpers lock together during the collision. Is this an elastic or inelastic collision? In a game of pool, the white cue ball hits the #5 ball and stops,...
An object A of mass 10 kg with velocity 18 m/s collides with an object B...
An object A of mass 10 kg with velocity 18 m/s collides with an object B of mass 20 kg which is at rest. The two objects undergo a perfectly inelastic collision. What is the velocity of object A after the collision?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT