Question

A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of...

A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of v⃗ =17000i^v→=17000i^ in m/s. They are positioned at the points (0,3,0)(0,3,0) and (0,−3,0)(0,−3,0). What is the magnitude and direction of the magnetic field at (0,3,0)(0,3,0) due to the particle located at (0,−3,0)(0,−3,0)? [Enter the magnitude in answer box 1 and the direction as one of either "in", "out", "up", "down", "left", or "right" in answer box 2. Assume that the xx-axis corresponds to left/right, the yy-axis corresponds to up/down, and the zz-axis corresponds to in/out.] B.) What is the force exerted by the magnetic field you calculated above on the particle at that location? Compare this to the direction of the electric force on the particle. [Enter the magnitude of the force in the first answer box and its direction in the second. Enter the direction of the electric force on the particle in the third box. For the directions enter either "in", "out", "up", "down", "left", or "right"] C.) How fast would the particles have to travel in order for there to be a balance between the magnetic and electric forces they exert on each other?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of...
A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of v⃗ =17000i^v→=17000i^ in m/s. They are positioned at the points (0,3,0)(0,3,0) and (0,−3,0)(0,−3,0). What is the magnitude and direction of the magnetic field at (0,3,0)(0,3,0) due to the particle located at (0,−3,0)(0,−3,0)? [Enter the magnitude in answer box 1 and the direction as one of either "in", "out", "up", "down", "left", or "right" in answer box 2. Assume that the xx-axis corresponds to left/right,...
A particle with a charge of 37 μC moves with a speed of 77 m/s in...
A particle with a charge of 37 μC moves with a speed of 77 m/s in the positive x direction. The magnetic field in this region of space has a component of 0.42 T in the positive y direction, and a component of 0.87 T in the positive z direction. Part A: What is the magnitude of the magnetic force on the particle? Express your answer using two significant figures. Part B: What is the direction of the magnetic force...
The figure below shows three charged particles, all lying along the horizontal axis. Particle A, at...
The figure below shows three charged particles, all lying along the horizontal axis. Particle A, at left, has a 6.35 nC charge. Particle B has a 1.10 nC charge and is 3.00 cm to the right of A. Particle C has a −2.35 nC charge and is 2.00 cm to the right of B.What is the magnitude (in N/C) of the electric field at a point 2.00 cm to the right of A? A fourth particle with a charge of...
Consider two long straight wires parallel to each other. The wire A on the left has...
Consider two long straight wires parallel to each other. The wire A on the left has a current of I1= 3 A and is separated by 5 m from the wire B on the right that carries I2= 2 A of current. The currents are flowing in the same direction as in the figure. a) Consider a point P that is 2 m to the right of wire B. Determine the magnitude including unit and direction of the magnetic field...
Two infinite, nonconducting sheets of charge are parallel to each other as shown in the figure...
Two infinite, nonconducting sheets of charge are parallel to each other as shown in the figure below. The sheet on the left has a uniform surface charge density σ, and the one on the right has a uniform charge density −σ. Calculate the electric field at the following points. (Use any variable or symbol stated above along with the following as necessary: ε0.) (a) to the left of the two sheets magnitude E = direction ---Select---to the left, to the...
Two charged particles are moving with equal velocities of 2.40 m/s in the +x-direction. At one...
Two charged particles are moving with equal velocities of 2.40 m/s in the +x-direction. At one instant of time the first particle with a charge of 6.20 μμC is located at x = 0 and y = +6.00 cm, and the second particle with a charge of 2.00 μμC is located at x = 0 and y = -6.00 cm. a) What is the y-component of the magnetic force on the first particle due to the second? b) How fast...
Consider two infinite plates, both parallel to the xy plane of a coordinate system. The top...
Consider two infinite plates, both parallel to the xy plane of a coordinate system. The top plate is at the height z = +5cm and carries a uniform charge distribution of ?= +3nC/m2. The bottom plate is at height z = - 5cm and carries a uniform charge distribution of ?= -3nC/m2. The space between the plates is filled with air. Between the plates runs a long wire along the y-axis (at z=0 and x=0), carrying a current of 10A....
1. A particle of positive charge q and mass m enters parallel uniform electric and magnetic...
1. A particle of positive charge q and mass m enters parallel uniform electric and magnetic fields (of magnitudes E and B, respectively) both directed in the +z direction with a velocity v = v0i perpendicular to both fields. (a) What is the the particle’s initial acceleration? You can give your answer as a vector in component form. (b) What is the radius of the particle’s path (looking down the z-axis) if the magnetic field is B = Bk? Does...
1. Answer all parts for the theory. a. The magnetic field B acting upon a charge...
1. Answer all parts for the theory. a. The magnetic field B acting upon a charge q moving at velocity v gives rise to a force in direction perpendicular to ____________________. The velocity v The magnetic field B and the charge q The magnetic field B The velocity v and the magnetic field B b. Having a beam of electrons moving horizontally to the right side of the paper, what is the direction of the magnetic force if we applied...
GOAL Use the superposition principle to calculate the electric field due to two point charges. Consider...
GOAL Use the superposition principle to calculate the electric field due to two point charges. Consider the following figure. The resultant electric field  at P equals the vector sum 1 + 2, where 1 is the field due to the positive charge q1and 2 is the field due to the negative charge q2.Two point charges lie along the x-axis in the x y-coordinate plane. Positive charge q1 is at the origin, and negative charge q2 is at (0.300 m, 0). Point...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT