Question

57). (Formulation of Differential Equation Models): Consider the problem of a simple pendulum with a mass...

57). (Formulation of Differential Equation Models): Consider the problem of a simple pendulum with a mass m and string length L. Formulate the differential equation along with initial condition that describes the oscillations of the pendulum with and without damping (or air resistance) and also for small as well as large amplitude oscillations. PS: please try to express the meaning of each of the terms in your equation

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Simple Pendulum with Gravity A pendulum consists of a mass m = 0.08 kg hanging from...
Simple Pendulum with Gravity A pendulum consists of a mass m = 0.08 kg hanging from a flexible string of length L. The string is very thin, very light, and does not stretch. It makes small oscillations, with a period of 0.622 s. What is the oscillation frequency of the pendulum? Neglect any air resistance. What would the period of the pendulum be on the moon's surface? Indicate for each of the following statements whether it is correct or incorrect....
A small mass is hung at the end of a light string of length 1.5 m...
A small mass is hung at the end of a light string of length 1.5 m and allowed to swing over a small amplitude as a simple pendulum. It is observed that the amplitude of swing is reduced to half its initial value in 30 complete swings. It may be assumed that the reduction of amplitude is due entirely to resistance of the air and this in turn may be assumed to be proportional to the velocity of the mass....
Consider a simple pendulum with a bob of mass 4.0 kg and a string of length...
Consider a simple pendulum with a bob of mass 4.0 kg and a string of length 45 cm. Part A: Which of the following is true for small angular displacement? a. The net torque is proportional to the negative of the angle displaced from the equilibrium b. The period is inversely proportional to the amplitude c. The kinetic energy is always equal to the potential energy d. The minimum velocity is achieved when the bob is at equilibrium Part B:...
In studies of harmonic systems and of circular motion, radians are always used instead of degrees...
In studies of harmonic systems and of circular motion, radians are always used instead of degrees in derivations. This is ________________. an arbitrary choice or preference. necessary and related to the arc length equation. because there is not a one-to-one mapping of theta to sin(theta) when using degrees. because we like Greece more than Babylon. 4 points    QUESTION 12 Which of the following is not unique to simple harmonic systems and could apply to any harmonic system? Motion is...
11. A simple pendulum undergoes small-angle oscillations. Which of the following pairs (mass, string length) will...
11. A simple pendulum undergoes small-angle oscillations. Which of the following pairs (mass, string length) will oscillate with a period greater than 2.2 seconds? a) (0.50 kg, 1.0 m) b) (0.40 kg, 0.80 m) c) (1.0 kg, 0.50 m) d) (0.80 kg, 0.40 m) e) none of the above answers are correct (numbers 15-17) An ideal horizontal spring-mass system begins oscillation with the mass at x=0 (the spring is relaxed) and moving in the -x direction at 6.00 m/s. The...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT