Question

A frictionless spring system has k value of 1000N/m, amplitude of 15cm, mass of 100g. Calculate...

A frictionless spring system has k value of 1000N/m, amplitude of 15cm, mass of 100g. Calculate the following:

a) the speed of the mass when x is 10cm

b) the acceleration of the mass when x is 5cm

c) the force of the mass when x is 15cm

d) the kinetic energy and potential energy when x is 8cm e) the frequency and period.

Homework Answers

Answer #1

Use equation for speed of object and in simple harmonic motion using the value of angular frequency as shown below

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a mass-spring system. The spring has constant k=30N/m and the mass m=3kg. The mass oscillates...
Consider a mass-spring system. The spring has constant k=30N/m and the mass m=3kg. The mass oscillates with amplitude of 10cm. What is the frequency of oscillation? What is the displacement at time t=0? When is the first time for the mass to be at maximum displacement? (t=?) What is the maximum acceleration felt by the mass? Where in the motion does this occur? What is the minimum acceleration felt by the mass? Where in the motion does this occur? What...
1. Calculate the spring constant ,k, for a spring, if the spring stretches by 0.2 m...
1. Calculate the spring constant ,k, for a spring, if the spring stretches by 0.2 m as a result of an applied force of 200N. 2. A 20 kg mass is attached to a spring with spring constant, K=100 N/m. The spring/mass system is stretched by 5cm, and then released from rest and allowed to oscillate back and forth A.) What is the amplitude of vibration in this system? B.) Calculate the acceleration of the mass at X=0. 3. In...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
A frictionless spring-mass system with spring constant 425 N/m and mass 1kg oscillates with amplitude 8.0...
A frictionless spring-mass system with spring constant 425 N/m and mass 1kg oscillates with amplitude 8.0 cm. What is its speed at position x = 3.5 cm? (Answer in cm/s.)
At t=0, an 840-g mass at rest on the end of a horizontal spring (k =...
At t=0, an 840-g mass at rest on the end of a horizontal spring (k = 160 N/m ) is struck by a hammer which gives it an initial speed of 2.30 m/s . Determine the period of the motion. Determine the frequency of the motion. Determine the amplitude Determine the maximum acceleration. Determine the total energy. Determine the kinetic energy when x=0.40A where A is the amplitude
5. A mass attached to a spring undergoes a simple harmonic motion (SHM) on a frictionless...
5. A mass attached to a spring undergoes a simple harmonic motion (SHM) on a frictionless horizontal surface. Suppose you increase the amplitude of the SHM, which of the following quantities DOES (DO) NOT increase? (There can be more than one answer) 1. The period of the SHM 2. The maximum acceleration 3. The frequency of the SHM 4. The maximum kinetic energy 5. The maximum spring potential energy 6. The maximum speed.
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other end of the spring is fixed to a wall. The spring constant is 6.00 N/m. The mass is moved to the right, stretching the spring by 12.0 cm, and then released from rest. a) Find the frequency of the motion in Hz. b) Find the force when x = 6.00 cm. c) Find the time when x = 6.00 cm. d) Find the velocity...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.
How can you measure the spring constant of a spring? You can measure spring constant K=...
How can you measure the spring constant of a spring? You can measure spring constant K= Force applied/change in length of the spring. ● How can you use a known spring to find an unknown mass? ● How does the amount of mass affect the frequency and the period? ● How does the amplitude affect the frequency and the period? ● How does the spring constant affect the frequency and the period? ‘ ● How does gravity affect the motion...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT