Question

A 0.774 kg mass is on the end of a frictionless, horizontal
spring. The spring is stretched 0.0566 m and released. It completes
12 oscillations in 4.62 s. Calculate: a) the oscillation frequency,
b) the oscillation period, c) the spring force constant, d) the
total mechanical energy of the oscillating spring, e) the maximum
speed of the oscillating spring.

Answer #1

A particle with mass 2.61 kg oscillates horizontally at the end
of a horizontal spring. A student measures an amplitude of 0.923 m
and a duration of 129 s for 65 cycles of oscillation. Find the
frequency, ?, the speed at the equilibrium position, ?max, the
spring constant, ?, the potential energy at an endpoint, ?max, the
potential energy when the particle is located 68.5% of the
amplitude away from the equiliibrium position, ?, and the kinetic
energy, ?, and...

A 1.50-kg object is attached to a spring and placed on
frictionless, horizontal surface. A horizontal force of 28.0 N is
required to hold the object at rest when it is pulled 0.200 m from
its equilibrium position (the origin of the x axis). The
object is now released from rest from this stretched position, and
it subsequently undergoes simple harmonic oscillations.
a.)Find the force constant of the spring.
b.)Find the frequency of the oscillations.
c.)Find the maximum speed of...

A 0.24 kg mass is attached to a light spring with a force
constant of 30.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
b) speed of the oscillating mass when the spring is compressed
1.5 cm
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium position
(d) value of...

A 0.58 kg mass is attached to a light spring with a force
constant of 31.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
m/s
(b) speed of the oscillating mass when the spring is compressed 1.5
cm
m/s
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium position
m/s...

A 0.68 kg mass is attached to a light spring with a force
constant of 36.9 N/m and set into oscillation on a horizontal
frictionless surface. If the spring is stretched 5.0 cm and
released from rest, determine the following.
(a) maximum speed of the oscillating mass
m/s
(b) speed of the oscillating mass when the spring is compressed 1.5
cm
m/s
(c) speed of the oscillating mass as it passes the point 1.5 cm
from the equilibrium...

A 3.30-kg object is attached to a spring and placed on
frictionless, horizontal surface. A horizontal force of 21.0 N is
required to hold the object at rest when it is pulled 0.200 m from
its equilibrium position (the origin of the x axis). The
object is now released from rest from this stretched position, and
it subsequently undergoes simple harmonic oscillations.
(a) Find the force constant of the spring.
N/m
(b) Find the frequency of the oscillations.
Hz
(c)...

. A block of mass 2.00 kg is attached to a horizontal spring
with a force constant of 500 N/m. The spring is stretched 5.00 cm
from its equilibrium position and released from rest. Use
conservation of mechanical energy to determine the speed of the
block as it returns to equilibrium
(a) if the surface is frictionless
(b) if the coefficient of kinetic friction between the block and
the surface is 0.350

A 4.00 kg mass on a frictionless horizontal surface is
attached to a spring. The other end of the spring is fixed to a
wall. The spring constant is 6.00 N/m. The mass is moved to the
right, stretching the spring by 12.0 cm, and then released from
rest.
a) Find the frequency of the motion in Hz.
b) Find the force when x = 6.00 cm.
c) Find the time when x = 6.00 cm.
d) Find the velocity...

8. A 0.40-kg mass is attached to a spring with a force constant
of k = 387 N/m, and the mass–spring system is set into
oscillation with an amplitude of A = 3.7 cm. Determine the
following.
(a) mechanical energy of the system
J
(b) maximum speed of the oscillating mass
m/s
(c) magnitude of the maximum acceleration of the oscillating
mass
m/s2

A 4.70-kg object on a frictionless horizontal surface is
attached to one end of a horizontal spring that has a force
constant k = 570 N/m. The spring is stretched 9.30 cm from
equilibrium and released.
(a) What is the frequency of the motion?
_____Hz
(b) What is the period of the motion?
______s
(c) What is the amplitude of the motion?
______cm
(d) What is the maximum speed of the motion?
______m/s
(e) What is the maximum acceleration of...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 9 minutes ago

asked 11 minutes ago

asked 13 minutes ago

asked 14 minutes ago

asked 33 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago