An isotope of radium (22488Ra) undergoes alpha decay. Use the information below to determine the deBroglie wavelength of the emitted alpha particle.
Atomic mass 22488Ra: 224.020187 u
malpha: 4.0026 u (6.646 x 10-27 kg)
Atomic number | Element | Mass number | Atomic mass (u) |
90 | Thorium (Th) | 228 | 228.028716 |
226 | 225.905364 | ||
88 | Radium (Ra) | 220 | 220.043941 |
86 | Radon (Rn) | 222 | 222.017571 |
220 |
220.011369 |
The alpha decay of 22488Ra can be represented as,
22488Ra → 22086Rn + 42He
The Q value of the reaction is
Q = {mass of 22488Ra – (mass of 22086Rn + mass of 42He)} x 931.5 MeV
Q = {224.020187 – (220.011369 + 4.0026)} x 931.5 = 5.792 MeV
Kinetic energy of alpha particle emitted, Kα = mass of daughter nucleus x Q/ (mass of alpha particle+ mass of daughter nucleus)
Kα = 220 x Q/224 = 5.794 x 220/224 = 5.69 MeV = 5.69 x 1.6 x 10-13 J = 9.104 x 10-13 J
De-Broglie wavelength of alpha particle, λ = h/(2m Kα)1/2
λ = 6.625 x 10-34/( 2 x 6.646 x 10-27 x 9.104 x 10-13)1/2 = 6.022 x 10-13 m
De-Broglie wavelength of alpha particle, λ = 6.022 x 10-13 m
Get Answers For Free
Most questions answered within 1 hours.