Question

Two objects collide on a frictionless surface. Object A with a mass of 200g is moving...

Two objects collide on a frictionless surface. Object A with a mass of 200g is moving in the positive x−direction with a speed of 1.0ms while object B, with a mass of 250g, is at rest. After the collision object B is seen to have a speed of 0.40ms at an angle of 36.87◦ with respect to the positive x−axis. Find the magnitude and direction of the object A after the collision. Find the kinetic energy of the system before and after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Consider an object of mass m1 = 0.425 kg moving with a uniform speed of...
1) Consider an object of mass m1 = 0.425 kg moving with a uniform speed of 6.65 m/s on a frictionless surface. This object makes an elastic head-on collision with another object of mass m2 = 0.555 kg  which is initially at rest. (a) Find the speed of m1 immediately after collision. (b) Find the speed of m2 immediately after collision. 2) An object of mass m1 = 0.395 kg  starts from rest at point  and slides down an incline surface that makes...
Mass A (3 kg) and Mass B (1 kg) collide head‐on on a frictionless surface.  A was...
Mass A (3 kg) and Mass B (1 kg) collide head‐on on a frictionless surface.  A was initially moving to the right at 0.2 m/s, while B was moving at 0.4 m/s to the left.  The collision is completely elastic. a) Find the velocity (magnitude and direction) for each mass after the collision.  Treat this as a one dimensional problem. b) Find the change in momentum for each mass.  Compare. c) Find the change in kinetic energy for each mass.  Compare.
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 8.5 m/s. After the collision, the 0.20-kg puck has a speed of 5.1 m/s at an angle of θ = 53° to the positive x-axis. (a) Determine the velocity of the 0.30-kg puck after the collision. magnitude     m/s direction ° from the positive x-axis (b) Find the fraction of kinetic energy lost...
Two equal masses collide in space away from any gravitational object. Mass A is moving in...
Two equal masses collide in space away from any gravitational object. Mass A is moving in a straight line at 45 m/s and mass B is initially at rest. After the collision mass A is traveling along a path that makes a +30o angle with its initial direction of motion, and mass B is traveling at an angle of -45o relative to A's initial motion. (a) Find the speeds of the two masses after the collision. (b) What is the...
5 You have two objects with the same mass and they are going to collide with...
5 You have two objects with the same mass and they are going to collide with respect to each other. Estimate the ratio between the total kinetic energy associated with the two objects before and after the collision. Assume that the collision was a perfectly inelastic collision and that one of the two objects was moving with a certain velocity and the other was at rest before the collision.
A 0.283 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a...
A 0.283 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.108 kg puck moving initially along the x axis with a speed of 2.37 m/s. After the collision, the 0.108 kg puck has a speed of 1.37 m/s at an angle of 32◦ to the positive x axis. a. Determine the velocity of the 0.283 kg puck after the collision. b. Find the fraction F of kinetic energy lost in the collision.
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 6.50 m/s along the +x-axis and scatters to an angle of 32.0° above the +x-axis. A) What is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = _______ Velocity (direction) = ________ below +x-axis...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision.
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200-kg puck has a speed of 1.00 m/s at an angle of ? = 49.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy transferred away or transformed to other forms of energy...
1.Two objects collide and stick together. The collision [must be, may or may not be, cannot...
1.Two objects collide and stick together. The collision [must be, may or may not be, cannot be] elastic. 2.Two objects collide and do not stick together. The collision [must be, may or may not be, cannot be] elastic. 3.A moving object collides with an equal mass object initially at rest. The first object stops after the collision. The collision [must be, may or may not be, cannot be] elastic. 4. A moving object collides with another object of greater mass...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT