Question

Two metal balls of equal mass collide elastically (what does this mean in terms of conservation?),...

Two metal balls of equal mass collide elastically (what does this mean in terms of conservation?), with the collision happening at the origin. The second ball starts out at rest at the origin, and the first ball starts out approaching the origin with some velocity, moving entirely in the positive x direction. The second ball ends up traveling at 12 m/s, moving in a direction that is 60 degrees above the positive x axis. Find the final velocity (magnitude and direction) of the first ball, and find the initial speed of the first ball.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two balls collide elastically. Ball A has a mass of 3.00 kg and moves to the...
Two balls collide elastically. Ball A has a mass of 3.00 kg and moves to the right at 2.00 m/s. Ball B has a mass of 1.29 kg, and moves to the left, also at 2.00 m/s.The balls collide head-on. A) Find the speed of Ball A after the collision. B) Find the speed of Ball B after the collision. C) Find the impulse delivered to Ball A during the collision. D) Find the impulse delivered to Ball B during...
Two billiard balls of equal mass move at right angles and meet at the origin of...
Two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Ball A is moving upward along the y axis at vA = 1.6 m/s , and ball B is moving to the right along the x axis with speed vB = 5.3 m/s . After the collision, assumed elastic, ball B is moving along the positive y axis(Figure 1). What is the final direction of ball A? What are their...
Two balls traveling in opposite directions collide head on. Ball1 is traveling in the positive x...
Two balls traveling in opposite directions collide head on. Ball1 is traveling in the positive x direction at a speed of v1 = 4.50 m/s and mass of m1 = 2.0 Kg. Ball2 is traveling in the negative x direction at a speed of v2 = -6.50 m/s and a mass of m2 = 4.0 Kg. a) If we assume that the two balls are made of clay and become one mass during the collision what is their combined final...
two putty balls, one of mass M and the other of mass 2M, collide and stick...
two putty balls, one of mass M and the other of mass 2M, collide and stick together. just before the collision, the ball with mass 2m is moving at an angle theta, with respect to the +y direction with speed V, and ball with mass M is moving in the +x direction with speed 2V. (derive and expression using the coordinate system provided, in terms of system parameters, for the KE of the combined object after collision.?)
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1050 kg and was approaching at 9.00 m/s due south. The second car has a mass of 800 kg and was approaching at 20.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1650 kg and was approaching at 5.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west. (a) Calculate the final velocity of the cars (In m/s). (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1500 kg and was approaching at 4.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...
Two objects collide on a frictionless surface. Object A with a mass of 200g is moving...
Two objects collide on a frictionless surface. Object A with a mass of 200g is moving in the positive x−direction with a speed of 1.0ms while object B, with a mass of 250g, is at rest. After the collision object B is seen to have a speed of 0.40ms at an angle of 36.87◦ with respect to the positive x−axis. Find the magnitude and direction of the object A after the collision. Find the kinetic energy of the system before...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1650 kg and was approaching at 4.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...
A ball with a mass of 2 kg is initially moving to the right with a...
A ball with a mass of 2 kg is initially moving to the right with a speed of 3 m/s. It collides with a 5 kg ball moving to the left with a speed of 1 m/s. The balls collide partially elastically: 70% of the initial kinetic energy of the system is conserved in the collision. Find the final velocity of each ball. The balls move only along the x-axis. Show your work.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT