Question

A light cord is wrapped about a disk with radius of 30 cm and a mass...

A light cord is wrapped about a disk with radius of 30 cm and a mass of 1.4 kg. the disk is free to rotate about an anxle. The cord is pulled with a tension T= 1.5 newtons for 10 sec.

a. What was the torque applied to the disk?

b. What was the angular acceleration of the disk?

c. Calculate the angular velocity of the disk and the total angular distance turned after 10 secs

d. Show that the final rotational kinetic energy of the disks equals the work done in pulling on the cord.

Homework Answers

Answer #1

a)

torque=r*F*sin(theta)

=0.3*1.5*sin(90)

=0.45 Nm

b)

alpa=torque/I

=0.45/0.5*mr^2

=0.45/0.5*1.4*0.3^2

=7.143 rad/sec^2

c)

w=alppa*t

=7.143*10

=71.428 rad/sec

and

theta=1/2*alpa*t^2

=0.5*7.143*10^2

=357.142 rad

d)

rotational K.E=1/2*I*W^2

=(1/2)*(1/2)*mr^2*w^2

=(1/4)*1.4*(0.3^2)*(71.428^2)

=160.7117 J .......................(1)

and

work done=torque*theta

=(0.45*357.142)

=160.7139 J ........................(2)

from above two equation rotational K.E is equals to work done

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm rests with its flat surface on a frictionless table (i.e., the axis of the cylinder is perpendicular to the table.) The diagram shows a top view. A string is wrapped around the rim of the disk and a constant force of F = 10.8 N is applied to the string. The string does not slip on the rim. 1) What is the acceleration of...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.2 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.1 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.7 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.7 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.7 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 2.4 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 2.4 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.8 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius 2.58 m. At time t=0.00 s the disk has an angular velocity of 4.00 rad/s and rotates counterclockwise about its center O, and Pis on the x-axis. A net applied CW torque of 20.0 m-N causes the wheel to undergo a uniform angular acceleration. The magnitude of the total acceleration (m/s2) at point Pwhen t = 15.0 s is? The angular velocity of the...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 6 kg · m2 and an angular velocity of +10 rad/s. Disk B is rotating with an angular velocity of –4 rad/s and has a moment of inertia of 4kgm2. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit. The axis of rotation for this unit is the same as that...
An electric sander consisting of a rotating disk of mass 0.75 kg and radius 10 cm...
An electric sander consisting of a rotating disk of mass 0.75 kg and radius 10 cm rotates at 15 rev/sec. When applied to a rough wooden wall the rotation rate decreases by 30.0%. a) What is the final rotational kinetic energy of the rotating disk? b) How much has its rotational kinetic energy [in J] decreased?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT