Question

A 1.0 kgkg ball and a 2.0 kgkg ball are connected by a 1.2-mm-long rigid, massless...

A 1.0 kgkg ball and a 2.0 kgkg ball are connected by a 1.2-mm-long rigid, massless rod. The rod is rotating cw about its center of mass at 24 rpmrpm .

What torque will bring the balls to a halt in 4.6 s ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.0 kg ball and a 1.9 kg ball are connected by a 1.0 m long...
A 1.0 kg ball and a 1.9 kg ball are connected by a 1.0 m long rigid, massless rod. The rod is rotating clockwise about its center of mass at 22 rpm. What torque will bring the balls to a halt in 5.8 s? ____ N m
A 350 g ball and a 600 g ball are connected by a 49.0-cm-long massless, rigid...
A 350 g ball and a 600 g ball are connected by a 49.0-cm-long massless, rigid rod. The structure rotates about its center of mass at 170 rpm. What is its rotational kinetic energy?
A uniform rod of mass 3.45×10−2 kgkg and length 0.360 mm rotates in a horizontal plane...
A uniform rod of mass 3.45×10−2 kgkg and length 0.360 mm rotates in a horizontal plane about a fixed axis through its center and perpendicular to the rod. Two small rings, each with mass 0.250 kgkg , are mounted so that they can slide along the rod. They are initially held by catches at positions a distance 4.80×10−2 mm on each side from the center of the rod, and the system is rotating at an angular velocity 28.0 rev/minrev/min ....
9.38 An airplane propeller is 1.86 mm in length (from tip to tip) with mass 116...
9.38 An airplane propeller is 1.86 mm in length (from tip to tip) with mass 116 kgkg and is rotating at 2900 rpmrpm (rev/minrev/min) about an axis through its center. You can model the propeller as a slender rod. Part A What is its rotational kinetic energy? Part B Suppose that, due to weight constraints, you had to reduce the propeller's mass to 75.0%% of its original mass, but you still needed to keep the same size and kinetic energy....
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.4 rad/srad/s and a moment of inertia about the axis of 2.70×10−3 kg⋅m2kg⋅m2 . An insect initially standing on the rod at the axis of rotation decides to walk to the other end of the rod. When the...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...
A uniform stick 1.0 m long with a total mass of 300.0 g is pivoted at...
A uniform stick 1.0 m long with a total mass of 300.0 g is pivoted at its center. A 3.0 g bullet is shot through the stick midway between the pivot and one end. The bullet approaches at 250 m/s and leaves at 160 m/s. With what angular speed is the stick spinning after the collision, if the bullet strikes the stick perpendicularly? (The moment of inertia of a uniform stick rotating about its center is I = (1/12)mL2.)
1) A torque of 1.20 N m is applied to a thin rod of mass 2.50...
1) A torque of 1.20 N m is applied to a thin rod of mass 2.50 kg and length 50.0 cm pivoted about its center and at rest. How fast is the rod spinning after 4.25 s? a. 32.6 rad/s b. 8.16 rad/s c. 97.9 rad/s d. 24.5 rad/s 2) A torque of 1.20 N m is applied to a thin rod of mass 2.50 kg and length 50.0 cm pivoted about one end and at rest. How fast is...
2. The previous problem requires you to use the parallel axis theorem. Is there some physical...
2. The previous problem requires you to use the parallel axis theorem. Is there some physical interpretation of the two terms in the parallel axis theorem? How does this physical interpretation relate to the comparison you made between the two methods of computing kinetic energy in the previous problem? Previous: A 250 g solid sphere and a 500 g solid sphere are connected by a massless, rigid rod that is 90 cm long, as measured between the centers of the...