Question

If you have three capacitors in series with 1×10^-13 F, 2×10^-13 F, and 3×10^-13, respectively. Predict...

If you have three capacitors in series with 1×10^-13 F, 2×10^-13 F, and 3×10^-13, respectively. Predict the voltage and charge across each capacitor?

Homework Answers

Answer #1

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have the same plate area of 3.40 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 3.40. The total charge on the series arrangement is 13.8 pC. (a) What is the battery voltage? V (b) What is the potential difference across each...
Two capacitors are connected in series to a 12V power supply and fully charged, a) If...
Two capacitors are connected in series to a 12V power supply and fully charged, a) If the the capacitors are 300uf and 150 uf,what is the effective capacitance of the capacitor. B) what is the maximum charge on each capacitor? c) What is the voltage across each capacitor?
Capacitors C3 = 15 ?F and C4 = 25 ?F are initially charged as a series...
Capacitors C3 = 15 ?F and C4 = 25 ?F are initially charged as a series combination across a 60-V battery. After charging, these capacitors are then disconnected from the voltage source and reconnected with the two positive plates connected and the two negative plates connected. Find the resulting energy stored on each capacitor at steady state.
4) Five capacitors are connected purely in parallel. Three of them have same amount of charge...
4) Five capacitors are connected purely in parallel. Three of them have same amount of charge stored in them (all have Q), the fourth capacitor has 5.9 times more charge than Q, and the fifth capacitor has 3.6 times less charge than Q. If the equivalent capacitance of all the capacitors is 51 microfarads, what is the capacitance of the fifth capacitor in microfarads? 5) Five capacitors are connected purely in series to a 17 volt battery. Three of them...
1. Three capacitors are connected in series and give an effective capacitance of 22 nF. If...
1. Three capacitors are connected in series and give an effective capacitance of 22 nF. If C1 = 5 µF and C3 = 100 nF, what is C2? Suppose V1 = 5 V. Find the charge on and voltage across the other two capacitors. Again, calculate energy stored. 2. A parallel plate capacitor has plates with area 10 cm2 and a gap of 2 mm. First, find the capacitance of this capacitor. Now, imagine a metal plate of thickness 0.25...
Three parallel plate capacitors are connected in series. These capacitors have identical geometries. However, they are...
Three parallel plate capacitors are connected in series. These capacitors have identical geometries. However, they are filled with three different materials. The dielectric constants of the materials are 8.69, 8.06, and 8.68. It is desired to replace this series combination with a single parallel plate capacitor. Assuming that this single capacitor has the same geometry as each of the other three capacitors, determine the dielectric constant of the material with which it is filled
Three capacitors having capacitances of 8.0 µF, 8.2 µF, and 4.3 µF are connected in series...
Three capacitors having capacitances of 8.0 µF, 8.2 µF, and 4.3 µF are connected in series across a 36-V potential difference. (A) What is the charge on the 4.3μF capacitor? ( Express your answer using two significant figures ) (B) What is the total energy stored in all three capacitors? (Express your answer using two significant figures) (C) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other,...
Learning Goal: To understand how to calculate capacitance, voltage, and charge for a combination of capacitors...
Learning Goal: To understand how to calculate capacitance, voltage, and charge for a combination of capacitors connected in series. Consider the combination of capacitors shown in the figure.(Figure 1) Three capacitors are connected to each other in series, and then to the battery. The values of the capacitances are C, 2C, and 3C, and the applied voltage is ?V. Initially, all of the capacitors are completely discharged; after the battery is connected, the charge on plate 1 is Q Part...
Prelab: Capacitors 1) Watch the video on ultra capacitors (DON’T TRY THIS AT HOME!). Explain why...
Prelab: Capacitors 1) Watch the video on ultra capacitors (DON’T TRY THIS AT HOME!). Explain why one can get higher current out of a capacitor then batteries with the same voltage across the terminals – use equations to show this. 2) How is the equivalent capacitance of a series and a parallel circuit calculated? 3) What is the purpose of a dielectric? How does it affect the capacitance? 4) How can you find the energy stored in a capacitor? 5)...
Your friend claims that a certain circuit contains three capacitors but you don't know if they...
Your friend claims that a certain circuit contains three capacitors but you don't know if they are wired in series, parallel, or some combination. The battery has a voltage of 9V, two of the three capacitors have capacitances of 2μF while one has a capacitance of 1μF, and your friend claims that if were you to find the correct equivalent capacitance and replace the three capacitors with that, you would find the charge on the equivalent capacitor to be 1.8...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT