Question

In an Atwood's machine, one block has a mass of 860.0 g, and the other a...

In an Atwood's machine, one block has a mass of 860.0 g, and the other a mass of 1020.0 g. The pulley, which is mounted in horizontal frictionless bearings, has a radius of 4.50 cm. When released from rest, the heavier block is observed to fall 62.2 cm in 2.55 s (without the string slipping on the pulley).


What is the magnitude of the acceleration of the 860.0-g block?  

Tries 0/16

What is the magnitude of the acceleration of the 1020.0-g block?

Tries 0/16

What is the magnitude of the tension in the part of the cord that supports the 860.0-g block?

Tries 0/16

What is the magnitude of the tension in the part of the cord that supports the 1020.0-g block?

Tries 0/16

What is the magnitude of the angular acceleration of the pulley?

Tries 0/16

What is the rotational inertia of the pulley?

Tries 0/16

What is the change in the potential energy of the system after 2.55 s?

Tries 0/16

Homework Answers

Answer #1

Distace fall by block d= 62.2 cm = 0.622 m

Time taken to fall t = 2.55 s

Let acceleration of blocks has magnitude a

Answer for part A and B will be same

Part - C

Ligher block will move upwards with acceleration a

So tension in string is given as

Part-D

Heavier block

Part-E

Angular acceleration

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In an Atwood's machine, one block has a mass of 346.0 g, and the other a...
In an Atwood's machine, one block has a mass of 346.0 g, and the other a mass of 526.0 g. The pulley, which is mounted in horizontal frictionless bearings, has a radius of 4.50 cm. When released from rest, the heavier block is observed to fall 64.2 cm in 2.29 s (without the string slipping on the pulley). What is the magnitude of the acceleration of the 346.0-g block? What is the magnitude of the acceleration of the 526.0-g block?...
In an Atwood's machine, one block has a mass of 498.0 g, and the other a...
In an Atwood's machine, one block has a mass of 498.0 g, and the other a mass of 698.0 g. The pulley, which is mounted in horizontal frictionless bearings, has a radius of 5.70 cm. When released from rest, the heavier block is observed to fall 90.2 cm in 2.17 s (without the string slipping on the pulley). What is the magnitude of the acceleration of the 498.0-g block? What is the magnitude of the acceleration of the 698.0-g block?...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 9.20 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
A block of mass 18 kg and a block of mass 6 kg are attached by...
A block of mass 18 kg and a block of mass 6 kg are attached by a massless string that does not stretch. The string is passed over a massless, frictionless pulley. The blocks are released. The blocks slide against vertical walls as they move, which results in a frictional force of 25N acting on the heavier block and a frictional force of 14N acting on the lighter block. (a) Determine the magnitude of the acceleration of each block. __________________________m/s2...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ = 26.2° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
The system shown in the figure below consists of a mass M = 4.1-kg block resting...
The system shown in the figure below consists of a mass M = 4.1-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 2.4-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 4.1 kg acceleration of m...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
The diagram below shows an apparatus consisting of a massive block, a pulley and a rope....
The diagram below shows an apparatus consisting of a massive block, a pulley and a rope. One end of the rope is attached to the block and the other is wound around the pulley. The pulley has a mass of 12.0 kg and can be considered to be a solid disk of radius 33.0 cm . There is no friction in the bearings of the pulley.(Figure 1). The system is held at rest and then suddenly released at t=0. After...
A string passing over a pulley has a 3.75-kg mass hanging from one end and a...
A string passing over a pulley has a 3.75-kg mass hanging from one end and a 2.75-kg mass hanging from the other end. The pulley is a uniform solid cylinder of radius 4.9 cmcm and mass 0.80 kg. A) If the bearings of the pulley were frictionless, what would be the acceleration of the two masses? B) In fact, it is found that if the heavier mass is given a downward speed of 0.25 m/s , it comes to rest...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT