Question

A blue block has a mass of 0.92 kg and is stationary on a horizontal frictionless...

A blue block has a mass of 0.92 kg and is stationary on a horizontal frictionless surface. It is struck with a rubber mallet causing it to slide with a speed of 3.1 m/s on the horizontal surface. The mallet is in contact with the block for 23 milliseconds. The blue block collides with a red block with a mass of 0.75 kg and the two blocks stick together. The two blocks slide up a long smooth incline and come to a momentary stop.

  1. Sketch the three phases of the motion (mallet strike, collision, ramp). Label with variables.
  2. List all known variables and their values.
  3. What is the average force of the mallet on the blue block?
  4. What is the kinetic energy of the blue block after the mallet strikes it?
  5. After the collision, what is the velocity of the 2 blocks stuck together?
  6. What is the kinetic energy of the 2 blocks after the collision? Compare this to the kinetic energy before the collision. Explain why they are the same or different.
  7. At what vertical height do the blocks stop on the incline?
  8. If the incline were a rough surface would the stopping height of the blocks change? If not, explain. If so, how would it change?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s,...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s, until colliding head-on with, and sticking to, a 1.00 kg block at rest. A) Find the speed of the combination after the collision. B) The two blocks continue to slide together until coming in contact with a horizontal spring and eventually brought to rest. If the blocks compress the spring 10.0 cm, find the spring constant of the spring. C) How much work did...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of 7.3m/s. It collides inelastically with mass m2=1.7kg and the two blocks stick together. They then slide down a frictionless incline with a Height 95cm. How fast are they going when they reach the bottom of the incline? Part B. If the coefficient of kinetic friction, uk is 0.15 along the surface at the bottom of the ramp. What distance will the blocks side before...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 12.3 kg , moves along a frictionless air track with speed v1 = 13.0 m/s . It collides with block 2, of mass m2 = 39.0 kg , which was initially at rest. The blocks stick together after the collision. Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the two-block system's...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 1.70 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 59.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with...
Block 1, of mass m1 = 5.30 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 51.0 kg , which was initially at rest. The blocks stick together after the collision. A.Find the magnitude pi of the total initial momentum of the two-block system. B.Find vf, the magnitude of the final velocity of the two-block system. C. What is the change ΔK=Kfinal−Kinitial in the two-block...
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0...
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0 m/s when it undergoes a head-on, perfectly inelastic collision with a 4.0 kg block that is initially at rest on the top of a frictionless, 2.0 m high inclined plane. A) What is the speed of the combined blocks when they reach the bottom of the incline? B) If the ground at the bottom of the incline is level, and if the coefficient of...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to...
A block of mass 9.1 kg rests on a horizontal frictionless floor, and is connected to a vertical wall by a spring of force constant 205 N/mN/m as shown in the figure. When the spring is in its equilibrium position (neither stretched nor compressed), the block just touches a second lighter block of mass 3.4 kg at rest on the frictionless floor. The spring is now compressed by 0.12 mm (only the heavier mass is moved towards the wall) and...
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0...
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0 meters per second. The block then encounters a 35.0o incline, where the coefficients of static and kinetic friction are 0.20 and 0.10 respectively. Determine how far up the incline the block will slide, and if the block will slide back down or remain stationary on the incline (use a force analysis to determine this)
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0...
A 2.0 kg block slides on a frictionless horizontal surface with an initial speed of 15.0 meters per second. The block then encounters a 35.0o incline, where the coefficients of static and kinetic friction are 0.20 and 0.10 respectively. Determine how far up the incline the block will slide, and if the block will slide back down or remain stationary on the incline (use a force analysis to determine this).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT