Question

Two blocks of mass m1 (3.0 kg) and m2 (4.0 kg) on a leveled ground (Muk=0.25)...

Two blocks of mass m1 (3.0 kg) and m2 (4.0 kg) on a leveled ground (Muk=0.25) are connected via a rigid light string. A constant force of 40.0 N is pulling on m1 forward with an angle of 30.0 degrees with respect to the ground.

  1. draw a free body diagram of each block,
  2. find the acceleration of the blocks,
  3. calculate the work done by each force on m1 and m2,
  4. use work and Kinetic theory to find the speed of each block when they travel on the ground for 5.0 m.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
A mass m1 = 5.2 kg rests on a frictionless table and connected by a massless...
A mass m1 = 5.2 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.2 kg. A force of magnitude F = 38 N pulls m1 to the left a distance d = 0.83 m. 1) How much work is done by the force F on the two block system? 2) How much work is done by the normal force on m1 and m2? 3) What is the final speed of the...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
Two blocks of mass m1 = 2 kg and m2 = 1 kg are suspended over...
Two blocks of mass m1 = 2 kg and m2 = 1 kg are suspended over a pulley of mass M with a string of neglible mass. The pulley is a solid cylinder of radius R = 4 cm. The string does not slip on the pulley, which is a solid cylinder. The magnitude of downward accleration of mass m1 is measured to be a = g/4. A) Write down Newton's second law for m1, m2, and M using the...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 310  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.35.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.6m.
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released from rest at a height of h = 4.40 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) (a) Determine the velocity of each block just before the collision. (b) Determine the velocity of each block immediately after the...
Two blocks of masses m1 = 1.95 kg and m2 = 3.90 kg are each released...
Two blocks of masses m1 = 1.95 kg and m2 = 3.90 kg are each released from rest at a height of h = 6.00 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) Two blocks are on a curved ramp similar in shape to a half-pipe. There is a flat horizontal surface with opposite...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT