Question

A ball of mass m is tied to a string and is rotating in a vertical...

A ball of mass m is tied to a string and is rotating in a vertical plane. The string is elastic (it stretches), which causes the path to be elongated vertically rather than perfectly circular. At the top of the path, the speed has the minimum value that still allows the ball to complete its circular path.

Find: the length of the string when it makes an angle θ with respect to the horizontal.

The following quantities are known:

Mass of the ball , m

Elastic constant of the string, k

Length of the string when the ball is at the top , r0

angle θ

To solve the problem

a) Start by writing the conservation of energy; you know something about the top position, consider that to be your initial; the final state is when the string is at the angle θ. Taking the zero level for potential energy at the center of the circle would make the equation simpler.
b) Once you wrote the equation of conservation of energy, try to express each term as a function of r and known quantities. For example:

- x in the elastic potential energy formula is r-r0;

- The velocity at the top is at a minimum, so you can express it as a function of r0;

For the velocity at the final position, draw a free body diagram, look at the net force along the string and apply Newton’s Second Law along the string. The acceleration is, of course, the centripetal acceleration ;

-h at the final position can be expressed using the angle and r.


Homework Answers

Answer #1

If you have any doubt, feel free to ask.

Alright Dude, If that worked for you... dont forget to give THUMBS UP.(that will work for me!)

Thank you!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.154 kg and moves at v = 5.16 m/s. The circular path has a radius of R = 1.01 m 1) What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2) What is the magnitude of the tension in the string when the...
A tennis ball connected to a string is spun around in a vertical, circular path at...
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15 kg and moves at v = 4.89 m/s. The circular path has a radius of R = 0.94 m What is the minimum velocity so the string will not go slack as the ball moves around the circle?
A small ball of clay of mass m hangs from a string of length L (the...
A small ball of clay of mass m hangs from a string of length L (the other end of which is fixed). A seond ball of clay of mass m/3 is to be launched horizontally out of a spring with spring constant k. Once launched, the second ball will collide with and stick to the hanging ball, and they'll follow a circular path around the fixed end of the string. A) Determine an expression for the distance (change in x)...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
A wooden plank of length L and mass M is hanging vertically attached to the ceiling...
A wooden plank of length L and mass M is hanging vertically attached to the ceiling by a frictionless hinge. The plank is in equilibrium, when struck by a bullet of mass m that has velocity given by the equation below. The bullet hits the plank at a distance D (D< L) from the ceiling and remains stuck in the plank. ~v = vxˆi + vyˆj -> velocity of the bullet. a) What is the angular acceleration of the plank...
A simple pendulum consists of a ball of mass m suspended from the ceiling using a...
A simple pendulum consists of a ball of mass m suspended from the ceiling using a string of length L. The ball is displaced from its equilibrium position by a small angle θ and released. Which one of the following statements concerning this situation is correct? (a) If the mass were increased, the period of the pendulum would increase. (b) The frequency of the pendulum does not depend on the acceleration due to gravity. (c) If the length of the...
A ball with a mass of 270 g is tied to a light string that has...
A ball with a mass of 270 g is tied to a light string that has a length of 2.40 m. The end of the string is tied to a hook, and the ball hangs motionless below the hook. Keeping the string taut, you move the ball back and up until it is a vertical distance of 1.16 m above its equilibrium point. You then release the ball from rest, and it oscillates back and forth, pendulum style. As usual,...
A rock is tied to a string and spun in a circle of radius 1.4 m...
A rock is tied to a string and spun in a circle of radius 1.4 m as shown in the figure below. The speed of the rock is 13 m/s. (c) What is the total force on the rock directed toward the center of its circular path? Express your answer in terms of the (unknown) tension T in the string. (Use the following as necessary: ?.) F = (d) Apply Newton's second law along both the vertical and the horizontal...
A block of mass m is moving in a circular path on a tabletop. The radius...
A block of mass m is moving in a circular path on a tabletop. The radius of the circle is r and the object's speed is v. What is the initial angular momentum of the system? What is the initial kinetic energy of the system? Suppose the mass was being pulled in circular motion by a string. The string is threaded through a small hole on the top of the table, and a person pulls on the string until it...
In a spring gun system, a spring with a spring force constant 350 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 350 N/mN/m  , is compressed 0.11 mm . When fired, 81.0 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.40×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 90.0 %% of the kinetic energy at the bottom converted into an increase in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT