Question

Use the model for projectile motion, assuming there is no air resistance and g = 32...

Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second.

The quarterback of a football team releases a pass at a height of 6 feet above the playing field, and the football is caught by a receiver 20 yards directly downfield at a height of 4 feet. The pass is released at an angle of 35° with the horizontal.

(a) Find the speed of the football when it is released. (Round your answer to three decimal places.)
(b) Find the maximum height of the football. (Round your answer to one decimal place.)
(c) Find the time the receiver has to reach the proper position after the quarterback releases the football. (Round your answer to one decimal place.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The quarterback of a football team releases a pass at a height of 5 feet above...
The quarterback of a football team releases a pass at a height of 5 feet above the playing field, and the football is caught by a receiver 40 yards directly downfield at a height of 3 feet. The pass is released at an angle of 35° with the horizontal. (a) Find the speed of the football when it is released. (b) Find the maximum height of the football. (c) Find the time the receiver has to reach the proper position...
Use the model for projectile motion, assuming there is no air resistance and g = 32...
Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second. Determine the maximum height and range of a projectile fired at a height of 5 feet above the ground with an initial speed of 400 feet per second and at an angle of 45° above the horizontal. (Round your answers to three decimal places.)
Use the model for projectile motion, assuming there is no air resistance and g = 32...
Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second. A baseball player at second base throws a ball 90 feet to the player at first base. The ball is released at a point 5 feet above the ground with an initial speed of 60 miles per hour and at an angle of 13° above the horizontal. At what height does the player at first base catch the ball?...
Use the model for projectile motion, assuming there is no air resistance and g = 32...
Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second. Determine the maximum height and range of a projectile fired at a height of 4 feet above the ground with an initial speed of 600 feet per second and at an angle of 45° above the horizontal. (Round your answers to three decimal places.) maximum height Correct: maximum range Incorrect:
Use the model for projectile motion, assuming there is no air resistance and g = 32...
Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second. A baseball player at second base throws a ball 90 feet to the player at first base. The ball is released at a point 5 feet above the ground with an initial speed of 50 miles per hour and at an angle of 15° above the horizontal. At what height does the player at first base catch the ball?...
Use the model for projectile motion, assuming there is no air resistance and g = 32...
Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second. A baseball player at second base throws a ball 90 feet to the player at first base. The ball is released at a point 5 feet above the ground with an initial speed of 60 miles per hour and at an angle of 13° above the horizontal. At what height does the player at first base catch the ball?...
Use the model for projectile motion, assuming there is no air resistance and g = 32...
Use the model for projectile motion, assuming there is no air resistance and g = 32 feet per second per second. A baseball, hit 3 feet above the ground, leaves the bat at an angle of 45° and is caught by an outfielder 3 feet above the ground and 300 feet from home plate. What is the initial speed of the ball, and how high does it rise? (Round your answers to two decimal places.)
Use the model for projectile motion, assuming there is no air resistance and g=32 feet per...
Use the model for projectile motion, assuming there is no air resistance and g=32 feet per second per second. A bomber is flying at an altitude of 30,000 feet at a speed of v= 510 miles per hour (see figure). When should the bomb be released for it to hit the target? (Give your answer in terms of angle of depression from the plane to the target. Round your answer to two decimal places.) What is the speed of the...
Assume the acceleration of the object is a(t) = −32 feet per second per second. (Neglect...
Assume the acceleration of the object is a(t) = −32 feet per second per second. (Neglect air resistance.) A ball is thrown vertically upward from a height of 6 feet with an initial velocity of 68 feet per second. How high will the ball go? (Round your answer to two decimal places.)
1.)You are hitting baseballs. When you toss the ball into the air, your hand is 5...
1.)You are hitting baseballs. When you toss the ball into the air, your hand is 5 feet above the ground (see figure). You hit the ball when it falls back to a height of 3.5 feet. You toss the ball with an initial velocity of 20 feet per second. The height h of the ball t seconds after leaving your hand is given by h = 5 + 20t ? 16t2. How much time will pass before you hit the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT