Question

When light of frequency f is shined on a given metal, electrons of maximum kinetic energy...

When light of frequency f is shined on a given metal, electrons of maximum kinetic energy of 3.25 eV are ejected from the metal. When light of frequency 4f is shined on the same metal, electrons of maximum energy 15.65 eV are ejected from the metal.

Question: What is the work function of the metal?

Homework Answers

Answer #1

If you have any doubt, feel free to ask in the comments.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
The maximum kinetic energy of the emitted electrons is found to be 1.255 eV when a...
The maximum kinetic energy of the emitted electrons is found to be 1.255 eV when a metal surface is illuminated by light with a wavelength of 400 nm. When the same metal surface is illuminated by light with a different wavelength, the maximum kinetic energy of the emitted electrons is found to be 0.634 eV. What is the wavelength of this light in nm?
When a metal was exposed to one photon of light at a frequency of 3.36x10^15s^-1, one...
When a metal was exposed to one photon of light at a frequency of 3.36x10^15s^-1, one electron was emitted with kinetic energy of 4.00x10^-19J. Calculate the work function of this metal in J (per photon). And what is the maximum number of electrons that could be ejected from this metal by a burst of photon (at the same other frequency) with a total energy of 7.27x10^-7J?
Light with a frequency of 3.70 × 1015 Hz strikes a metal surface and ejects electrons...
Light with a frequency of 3.70 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 5.4 eV. What is the work function of the metal?
Light with a frequency of 3.22 × 1015 Hz strikes a metal surface and ejects electrons...
Light with a frequency of 3.22 × 1015 Hz strikes a metal surface and ejects electrons that have a maximum kinetic energy of 6.7 eV. What is the work function of the metal?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 3.35 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 2.05 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
When a metal was exposed to one photon of light at a frequency of 4.55× 1015...
When a metal was exposed to one photon of light at a frequency of 4.55× 1015 s–1, one electron was emitted with a kinetic energy of 4.10× 10–19 J. Calculate the work function of this metal. What is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 5.11× 10–7 J?
What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 2.3...
What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 2.3 x 102-nm EM radiation, given that the binding energy is 2.28 eV? Your answer should be a number with two decimal places, do not include unit.
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal,...
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal, Metal X. if the ejected electrons have a velocity of 6.13x10^5 m/s, what is the work function (binding energy) of Metal X? B) What is the longest wavelength of light (in nm) that can be used to eject electrons from the surface of Metal X? C) A different metal, Metal Y, has smaller binding energy. If the same frequency of light from Part A...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT