Question

A low-pass filter consists of a 113 μF capacitor in series with a 155 Ω resistor....

A low-pass filter consists of a 113 μF capacitor in series with a 155 Ω resistor. The circuit is driven by an AC source with a peak voltage of 5.30 V .

A. What is the crossover frequency fc?

B. What is VC when f=1/2fc?

C. What is VC when f=fc?

D. What is VC when f=2fc?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an...
A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s . What is the power factor of this circuit? Find the average power delivered to the entire circuit. What is the average power delivered to the resistor, to the capacitor, and to the inductor? Enter your answers numerically separated by commas.
You have a 199 −Ω−Ω resistor, a 0.405 −H−H inductor, a 5.10 −μF capacitor, and a...
You have a 199 −Ω−Ω resistor, a 0.405 −H−H inductor, a 5.10 −μF capacitor, and a variable-frequency ac source with an amplitude of 3.10 VV . You connect all four elements together to form a series circuit. -At what frequency will the current in the circuit be greatest? -What will be the current amplitude at this frequency? -What will be the current amplitude at an angular frequency of 401 rad/srad/s ? -At this frequency, will the source voltage lead or...
A 70 Ω resistor, an 7.0 μF capacitor, and a 34 mH inductor are connected in...
A 70 Ω resistor, an 7.0 μF capacitor, and a 34 mH inductor are connected in series in an ac circuit. -Calculate the impedance for a source frequency of 300 Hz. -Calculate the impedance for a source frequency of 30.0 kHz.
A load consists of a 12 μF capacitor in series with a 432 Ω resistor. The...
A load consists of a 12 μF capacitor in series with a 432 Ω resistor. The voltage across the load is given by v(t)=17cos(8,071t+0.25) where the phase is in radians. What is the magnitude of the current flow in capacitor/resistor load in mA?
A series circuit consists of an ac source of variable frequency, a 127 Ω resistor, a...
A series circuit consists of an ac source of variable frequency, a 127 Ω resistor, a 1.45 μF capacitor, and a 5.00 mH inductor. a.) Find the impedance of this circuit when the angular frequency of the ac source is adjusted to the resonance angular frequency. Express your answer in ohms. b.) Find the impedance of this circuit when the angular frequency of the ac source is adjusted to twice the resonance angular frequency. Express your answer in ohms. c.)...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s. (a) What is the power factor of this circuit? (b) Find the average power delivered to the entire circuit by the source, in W (c) What is the average power delivered to the capacitor, in W?
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
A 70 Ω resistor, an 9.0 μF capacitor, and a 36 mH inductor are connected in...
A 70 Ω resistor, an 9.0 μF capacitor, and a 36 mH inductor are connected in series in an ac circuit. a.) Calculate the impedance for a source frequency of 300 Hz. Express your answer with the appropriate units. b.) Calculate the impedance for a source frequency of 30.0 kHz. Express your answer with the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT