Question

1. Pushing on the pump of a bottle of hand washing solution compresses a small spring...

1. Pushing on the pump of a bottle of hand washing solution compresses a small spring which obeys Hooke's Law. If the potential energy of the spring is 0.0030 J when the spring is compressed 0.49 cm,determine the following.

(a)

the force constant (in kN/m) of the spring

kN/m

(b)

the compression (in cm) needed in order for the spring potential energy to equal 0.0083 J

cm

2. You have a light spring which obeys Hooke's law. This spring stretches 2.54 cm vertically when a 2.40 kg object is suspended from it. Determine the following.

(a)

the force constant of the spring (in N/m)

N/m

(b)

the distance (in cm) the spring stretches if you replace the 2.40 kg object with a 1.20 kg object

cm

(c)

the amount of work (in J) an external agent must do to stretch the spring 7.40 cm from its unstretched position

J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Hooke's law describes a certain light spring of unstretched length 38.0 cm. When one end is...
Hooke's law describes a certain light spring of unstretched length 38.0 cm. When one end is attached to the top of a door frame and a 6.00-kg object is hung from the other end, the length of the spring is 42.5 cm. (a) Find its spring constant. _________ kN/m (b) The load and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a force of 180 N. Find the length...
A light spring obeys Hooke's law. The spring's unstretched length is 31.5 cm. One end of...
A light spring obeys Hooke's law. The spring's unstretched length is 31.5 cm. One end of the spring is attached to the top of a doorframe and a weight with mass 8.00 kg is hung from the other end. The final length of the spring is 43.5 cm. (a) Find its spring constant (in N/m). N/m (b) The weight and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a...
A 1-kg object is attached to a spring of force constant k = 0.5 kN/m. The...
A 1-kg object is attached to a spring of force constant k = 0.5 kN/m. The spring is stretched 10 cm from equilibrium and released. What is the kinetic energy of the mass–spring system when the mass is 5.0 cm from its equilibrium position? Group of answer choices 2.95 J 2.32 J 3.48 J 2.71 J 1.88 J
An ideal spring of negligible mass is 12.00 cm long when nothing is attached to it....
An ideal spring of negligible mass is 12.00 cm long when nothing is attached to it. When you hang a 3.55 kg  object from it, you measure its length to be 13.40 cm. Part A If you wanted to store 10.0 J of potential energy in this spring, what would be its total length? Assume that it continues to obey Hooke's law. Express your answer in centimeters to three significant figures. If there is more than one answer, separate them by...
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m....
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m. This object reaches a maximum position of 12 cm from equilibrium. a) Determine the angular frequency of this mass. Then, determine the b) force, c) acceleration, d) elastic potential energy, e) kinetic energy, and f) velocity that it experiences at its maximum position. Determine the g) force, h) acceleration, i) elastic potential energy, j) kinetic energy, and k) velocity that it experiences at the...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...
A 0.400-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 12.2 cm. the maximum value of its speed is 54.6 WHAT IS THE MAXIMUM VALUE OF IT'S ACCELERATION? QUESTION 2 A 45.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 7.00 cm on a frictionless, horizontal surface. the total energy of the system is 98 the speed of...
A 0.25 kg object is suspended on a light spring of spring constant 41 N/m ....
A 0.25 kg object is suspended on a light spring of spring constant 41 N/m . The spring is then compressed to a position 15 cm above the stretched equilibrium position. Part A How much more energy does the system have at the compressed position than at the stretched equilibrium position? Express your answer using two significant figures. ?U= 0.49   J   SubmitPrevious AnswersRequest Answer Incorrect; Try Again; 6 attempts remaining Please show details!
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.10 N is applied. A 0.440-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at point A and ending at point B. The total time from A to B is 1.50 min. How much work did gravity do on the rock between A and B? A) 625 J B) 20.0 J C) 275 J D) 75 J E) 0 J 22) A person carries a 2.00-N pebble through the path shown in the figure, starting at point A and...