Question

A 19-g bullet is shot vertically into an 2-kg block. The block lifts upward 5.3 mm...

A 19-g bullet is shot vertically into an 2-kg block. The block lifts upward 5.3 mm . The bullet penetrates the block andcomes to rest in it in a time interval of 0.0010 s. Assume the force on the bullet is constant during penetration and that air resistance is negligible. Find the initial kinetic energy of the bullet. Express your answer in J.

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 11-g bullet is shot vertically into an 1.5-kg block. The block lifts upward 4.1 mm...
A 11-g bullet is shot vertically into an 1.5-kg block. The block lifts upward 4.1 mm (see the figure). The bullet penetrates the block and comes to rest in it in atime interval of 0.0010 s. Assume the force on the bullet is constant during penetration and that air resistance is negligible. Find the initial kinetic energy ofthe bullet. Express your answer in J
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface...
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm. The spring constant of the spring is 2400 N/m. The initial velocity of the bullet is closest to
A 30-gram bullet is shot with an initial speed Vo and embeds in 4.0 kg block...
A 30-gram bullet is shot with an initial speed Vo and embeds in 4.0 kg block sitting on a level surface. The bulle-/block slide 12m before coming to rest. The coefficient of kinetic friction between the block and the surface is 0.6. Determine the initial speed of the bullet.
bullet of mass m=14 gr is fired into a block of mass M=2 kg initially at...
bullet of mass m=14 gr is fired into a block of mass M=2 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.66 m from the bottom of the table. a)Determine the initial velocity of the bullet. vi=  m/s b) Determine the loss of kinetic Energy during the collision. ΔK =  J
1 a) Starting from rest, a 50 Kg person dives into water from a height of...
1 a) Starting from rest, a 50 Kg person dives into water from a height of 80 m above the water surface. Air resistance is negligible. (Use g= 10 m/s2) Calculate (A) the diver’s KE just before striking the water surface (B) the velocity of the diver just before striking the water (C) the work done by gravitational force on the diver (D) the power delivered by gravitational force on the diver b) A ball of mass m=0.2 Kg sitting...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...
A 1.8 kg rock is released from rest at the surface of a pond 1.8 mm...
A 1.8 kg rock is released from rest at the surface of a pond 1.8 mm deep. As the rock falls, a constant upward force of 5.0 N is exerted on it by water resistance. Let y=0 be at the bottom of the pond. Part G Calculate the kinetic energy of the rock, KK, when the depth of the rock below the water's surface is 0.50 mm. Express your answers using two significant figures. Part H Calculate the total mechanical...
4. A melon, 1.50 m above the ground, is tossed straight upward with 25 J of...
4. A melon, 1.50 m above the ground, is tossed straight upward with 25 J of kinetic energy. (a) If air resistance is negligible what is the kinetic energy of the melon when it returns to its initial level? (b) If the melon is 2.00 kg, what is the speed when the melon leaves your hand in order to have a K.E. of 25 J? (c) What is the total kinetic energy when the melon hits the ground? (d) What...
A 2400-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass)...
A 2400-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that its vertical velocity as a function of time is given by v(t)=At+Bt2, where A and B are constants and time is measured from the instant the fuel is ignited. At the instant of ignition, the rocket has an upward acceleration of 1.90 m/s2 and 1.20 s later an upward velocity of 1.50 m/s . Part A) Determine A....
A 2.5 kg rock is released from rest at the surface of a pond 1.8 m...
A 2.5 kg rock is released from rest at the surface of a pond 1.8 m deep. As the rock falls, a constant upward force of 4.4 N is exerted on it by water resistance. Let y=0 be at the bottom of the pond. Part A Calculate the nonconservative work, Wnc, done by water resistance on the rock, the gravitational potential energy of the system, U, the kinetic energy of the rock, K, and the total mechanical energy of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT