Question

An 18 ohms resistor and a 6 ohms resistor are connected in series across an 18...

  1. An 18 ohms resistor and a 6 ohms resistor are connected in series across an 18 V battery. Find the current through each resistor AND  the voltage drop across each resistor. Repeat for the situation of the resistors connected in parallel across the battery

please show working out step by step

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Chapter 18, Problem 1 A 47- resistor and a 29- resistor are connected in series across...
Chapter 18, Problem 1 A 47- resistor and a 29- resistor are connected in series across a 24-V battery. What is the voltage across (a) the 47- resistor and (b) the 29- resistor? Chapter 18, Problem 2 The current in a 63- resistor is 0.077 A. This resistor is in series with a 42- resistor, and the series combination is connected across a battery. What is the battery voltage? Chapter 18, Problem 3 What resistance must be placed in parallel...
Two resistors 1.00 ohms and 2.00 ohms are connected in parallel, then they are connected to...
Two resistors 1.00 ohms and 2.00 ohms are connected in parallel, then they are connected to 3.00 ohms resistor and a 9.00 V battery in series to complete a circuit. a. What is the equivalent resistance of this circuit? b. What is the current through the 1.00 Ohms resistor? c. What is the voltage on 3.00 ohms resistor? d. What is power dissipated on 2.00 ohm resistor?
A 3.0 resistor, an 6.0 resistor, and a 15 resistor are connected in series with a...
A 3.0 resistor, an 6.0 resistor, and a 15 resistor are connected in series with a 29 V battery. (a) What is the equivalent resistance? _______ (b) What are the currents in each resistor? _______A (3.0  resistor) _______ A (6.0  resistor) _______ A (15  resistor) (c) Repeat for the case in which all three resistors are connected in parallel across the battery. _______  (equivalent resistance) _______A (3.0  resistor) _______A (6.0  resistor) _______ A (15  resistor)
Resistors R 1 = 20 ohms, R 2 = 40 ohms, and R 3 = 60...
Resistors R 1 = 20 ohms, R 2 = 40 ohms, and R 3 = 60 ohms, are all connected in series with one another. The combination of three resisters in series is now connected in parallel with a 240 ohm resistor, and the resulting circuit is connected across an ideal 62.5 volt battery. a) Find the equivalent resistance connected across the battery. b) Find the potential across each of the four resistors, and the current through each. c) Find...
Resistor R1=3.7 Ohm is connected in series to parallel combination of resistors R2=7.9 Ohm and R3=11.1...
Resistor R1=3.7 Ohm is connected in series to parallel combination of resistors R2=7.9 Ohm and R3=11.1 Ohm. Find equivalent resistance of this combination. Give answer in Ohms. Resistor R1=3.7 Ohm is connected in series to parallel combination of resistors R2=7.9 Ohm and R3=10.7 Ohm. This combination is connected to the ideal battery of V=10.6 V. Find current through the R3. Give answer in A.
Resistor R1=3.0 Ohm is connected in series to a parallel combination of R2=9.0 Ohm and R3=7.0...
Resistor R1=3.0 Ohm is connected in series to a parallel combination of R2=9.0 Ohm and R3=7.0 Ohm. The combination of three resistors is connected to a real battery of emf 12.0 V. Find internal resistance of a battery if current through a battery is 0.40 A. Give answer in Ohms.
5) A resistor of 6 kilo-ohms is connected in series to a capacitor which are connected...
5) A resistor of 6 kilo-ohms is connected in series to a capacitor which are connected to a 10 volt battery. After some time, the charge in the capacitor is 10 micro-coulombs. At that time, the battery is disconnected and 6 milli-seconds after the battery has been disconnected, the charge in the capacitor is 3.7 micro-coulombs. What is the voltage across the resistor 2.2 milli-seconds after the battery has been disconnected in volts?
Resistor R1=3.7 Ohm is connected in series to parallel combination of resistors R2=7.9 Ohm and R3=11.1...
Resistor R1=3.7 Ohm is connected in series to parallel combination of resistors R2=7.9 Ohm and R3=11.1 Ohm. This combination is connected to the ideal battery of V=10.6 V. Find voltage drop on the resistor 7.9. Give answer in V.
Given three resistors R1 = 4 ohms, R2 = 6 ohms, R3 = 8 ohms and...
Given three resistors R1 = 4 ohms, R2 = 6 ohms, R3 = 8 ohms and a 12 volt battery source. Construct a schematic diagram of the third resistor in parallel to the series combination of the first and second and resistor. Solve for total resistance, total current, and the voltage through each resistor
Consider a simple circuit with two resistors connected in parallel. R1 = 30.0 Ohm, R2 =...
Consider a simple circuit with two resistors connected in parallel. R1 = 30.0 Ohm, R2 = 10.0 Ohm, and a 12 V battery Calculate the following values to one decimal places (enter just the number) The equivalent resistance  Ohms The voltage across resistor R1  V The voltage across resistor R2  V The current through resistor R1  A The current through resistor R2  A Consider a simple circuit with two resistors connected in series. R1 = 1.0 Ohm, R2 = 7.0 Ohm, and a 12 V...