Question

A small bullet of mass m=0.73g and speed v=13.5m/s embeds in a block of mass M=0.69kg...

A small bullet of mass m=0.73g and speed v=13.5m/s embeds in a block of mass M=0.69kg suspended by a massless string of length L, after a collision as shown in the figure. If the bullet will appear on the other side of the block M with a speed v'=5.6m/s, instead of being embedded in it, find the maximum height the block Mcan reach. (Take g=9.81 m/s2). Express your answer using two decimal places.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small bullet of mass m=0.27g and speed v=13m/s embeds in a block of mass M=0.98kg...
A small bullet of mass m=0.27g and speed v=13m/s embeds in a block of mass M=0.98kg suspended by a massless string of length L, after a collision as shown in the figure. If the bullet will appear on the other side of the block M with a speed v'=3.6m/s, instead of being embedded in it, find the maximum height the block M can reach. (Take g=9.81 m/s2). Express your answer using two decimal places.
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s embeds itself in a wooden block with mass mb= 0.99 kg moving in the same direction with an initial speed vb= 2.6 m/s. What is the speed of the bullet-embedded block after the collision? What is the total kinetic energy of the bullet and block system before and after the collision?
(1 point) A 15 g bullet strikes and embeds in a 2.2 kg block suspended at...
(1 point) A 15 g bullet strikes and embeds in a 2.2 kg block suspended at the end of a 1 m string. After the collision the string rises to a maximum angle of 26 degrees to the vertical. Find: a) the speed of the bullet: m/s b) the percentage loss in kinetic energy due to the collision: %
A bullet with speed 511 m/s and mass m = 5.00 g is shot into a...
A bullet with speed 511 m/s and mass m = 5.00 g is shot into a stationary block of wood hanging a distance h1 = 1.00 m above the ground, as shown in Figure 1. The block is hanging by a string of length r = 0.30 m. The bullet is lodged in the block, and the block-bullet system swings so that the string makes an angle of θ = 60.0° when the string breaks, as shown in Figure 2....
As shown in the figure below, a bullet is fired at and passes through a piece...
As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.486)v after passing through the target. The collision is inelastic and during the collision, the amount of energy lost is equal to a fraction [(0.273)KEb BC] of the kinetic energy of the bullet before the collision. Determine the...
A bullet of mass 4.00 g travelling at 250 m/s embeds into a wooden block of...
A bullet of mass 4.00 g travelling at 250 m/s embeds into a wooden block of mass 2.32 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.220. The bullet remains embedded in the block slides along the surface before stopping. What distance does the block slide before coming to rest?
a small bullet of mass m= 6 g staright up collides which a massive block of...
a small bullet of mass m= 6 g staright up collides which a massive block of wood. At the time of impact of the speed of the bullet is V_i = 8 m/s. The block has a mass m= 5 kg and is initially vest on the table as shown in the picture. In the collision the bullet gets embeded in the block. After the collision the block and bullet system rises up to a maximum height H. The collision...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into and passes through a block of mass 5 kg, as shown in the figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring of force constant 538 N/m. If the block moves a distance 1.3 cm to the right after the bullet passed through it, find the speed v at which the bullet emerges from the block and...
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.72 m long. The block is initially at rest. A bullet with mass 0.0136 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.700 m ,...
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.66 m long. The block is initially at rest. A bullet with mass 0.0128 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.775 m ,...