Question

A 2.50 kg block rests on an incline. When the angle of the incline is increased...

A 2.50 kg block rests on an incline. When the angle of the incline is increased to 300 above the horizontal the block starts to move.

a. Draw a free body diagram.  

Find the following:

b The Normal force acting on the block.

c. The frictional force acting on the block.

d. The minimum coefficient of friction for the block to remain at rest on the incline.  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.0 kg block is placed at rest on a 30 degree incline. The coefficient of...
A 5.0 kg block is placed at rest on a 30 degree incline. The coefficient of static friction is 0.7, and the coefficient of kinetic friction is lower than that. a) Draw a free body diagram of the block including all force components and determine the net force. b) Will the block begin to slide or will it remain at rest?
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the top of an inclined plane, oriented at a 25° angle above the horizontal. The coefficients of static and kinetic friction along the incline are 0.2 and 0.1, respectively. (a) Just after the block is released from rest, draw a free-body diagram for it. (Assume that the block is moving after being released from rest.) (b) Determine the magnitude of the normal force acting on...
A 3.00 kg block starts from rest at the top of a 30° incline and accelerates...
A 3.00 kg block starts from rest at the top of a 30° incline and accelerates uniformly down the incline, moving 1.83 m in 1.80 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. (c) Find the magnitude of the frictional force acting on the block. N (d) Find the speed of the block after it has slid a distance 1.83 m. m/s
A 5 kg block rests on a flat surface with a coefficient of static friction of...
A 5 kg block rests on a flat surface with a coefficient of static friction of 0.5 and a coefficient of kinetic friction of 0.3.A force of 20 N pushes on the block does not move . what is the magnitude of the frictional force on the block
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially...
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially moving at a constant velocity of to the right. A 75.0 newton force is then applied to the block, toward the right, at an angle of 200 above the horizontal. a) Free body diagram. b) The x and y components of the applied force.   c) The frictional force on the block. d) The acceleration of the block.
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle...
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle θ = 50° is connected by a cord over a massless, frictionless pulley to a second block of mass M1 = 5.36 kg on a horizontal surface. The coefficient of kinetic friction between M1, M2 and the surface is μk = 0.150, the Force F1 = 11.3 N is acting downward on M1, and the Force F2 = 21.8 N is acting on M2...
A 4.82 kg block located on a horizontal frictionless floor is pulled by a cord that...
A 4.82 kg block located on a horizontal frictionless floor is pulled by a cord that exerts a force F=12.4N at an angle theta=25.0degrees above the horizontal, as shown. What is the magnitude of the acceleration of the block when the force is applied? What is the horizontal speed of the block 4.30 seconds after it starts moving? What is the magnitude of the normal force acting on the block when the force F is acting on it? If, instead,...
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially...
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially moving at a constant velocity of to the right. A 75.0 newton force is then applied to the block, toward the right, at an angle of 200 above the horizontal. Find the following:        a. Free body diagram.          b. The x and y components of the applied force.          c. The frictional force on the block.          d. The acceleration of the block.
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially...
A 3.00 kg block that has a coefficient of kinetic friction of 0.350 and is initially moving at a constant velocity of to the right. A 75.0 newton force is then applied to the block, toward the right, at an angle of 200 above the horizontal. Find the following: a. Free body diagram. b. The x and y components of the applied force. c. The frictional force on the block. d. The acceleration of the block.
A 20.0 kg box (200 N) rests on an incline. The surface makes an angle of...
A 20.0 kg box (200 N) rests on an incline. The surface makes an angle of 22.62° with the horizontal and has µk = 0.62 and µs = 0.81. A) A horizontal force with a magnitude of 400 N acts on the box. Does the box move? If not, why not? If it does, what is its acceleration B) What minimum horizontal force is required to keep the box from sliding down the incline?