Question

Nike throws a 1kg basketball with the same momentum as a 2.5g bullet moving with a...

Nike throws a 1kg basketball with the same momentum as a 2.5g bullet moving with a speed of 1.67*103 m/s. (a) What is the speed of the basketball? (b) Which has greater kinetic energy, the ball or the bullet?

Homework Answers

Answer #1

Pls do upvote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s...
A bullet of mass ma= 0.01 kg moving with an initial speed of va= 200 m/s embeds itself in a wooden block with mass mb= 0.99 kg moving in the same direction with an initial speed vb= 2.6 m/s. What is the speed of the bullet-embedded block after the collision? What is the total kinetic energy of the bullet and block system before and after the collision?
A basketball and a tennis ball hit head on and undergo a collision. The basketball has...
A basketball and a tennis ball hit head on and undergo a collision. The basketball has 30 x the mass of the tennis ball. The basketball was initially moving to the right at 3.00m/s and the tennis ball was moving to the left at 12.0 m/s. If after the collision, the basketball still moves to the right at 1.58 m/s, a) determine the velocity of the tennis ball b) determine how much kinetic energy of the system is “lost” (DK=?)
1) Calculate the magnitude of the linear momentum for the following cases. (a) a proton with...
1) Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass 1.67  10-27 kg, moving with a speed of 4.65  106 m/s kg · m/s (b) a 17.5-g bullet moving with a speed of 340 m/s kg · m/s (c) a 73.5-kg sprinter running with a speed of 12.5 m/s kg · m/s (d) the Earth (mass = 5.98  1024 kg) moving with an orbital speed equal to 2.98  104 m/s. kg · m/s 2) A soccer player...
The wavelength of a photon that has the same momentum as an electron moving with a...
The wavelength of a photon that has the same momentum as an electron moving with a speed of 1444 m/s is λ= nm.
To make a bounce pass, a player throws a 0.55-kg basketball toward the floor. The ball...
To make a bounce pass, a player throws a 0.55-kg basketball toward the floor. The ball hits the floor with a speed of 5.5 m/s at an angle of 58 ∘ to the vertical. Part A If the ball rebounds with the same speed and angle, what was the magnitude of the impulse delivered to it by the floor? Express your answer using two significant figures. I = ______   kg⋅m/s  
Calculate the magnitude of the linear momentum for the following cases: (a) a proton with mass...
Calculate the magnitude of the linear momentum for the following cases: (a) a proton with mass equal to 1.67 ×1027 kg, moving with a speed of 5.00 ×106m/s; (b) a 15.0 g bullet moving with a speed of 300 m/s; (c) a 75.0 kg sprinter running with a speed of 10.0 m/s; (d) the Earth (mass =5.98×1024 kg) moving with an orbital speed equal to 2.98×104 m/s.
Calculate the linear momentum, and the de Broglie wavelength of: a) a 0.75 kg bullet that...
Calculate the linear momentum, and the de Broglie wavelength of: a) a 0.75 kg bullet that is fired at a speed of 100 m / s, b) a non-relativistic electron with a kinetic energy of 2.0 eV, and c) a relativistic electron with a kinetic energy of 208 keV. !!!! # !! Remember that for relativistic particles: ? = ? ? + ? "? and ? = ?? = ? + ?" ?, the mass of the electron is 9.11...
1. Which has the greater kinetic energy, a heavy truck at rest or a moving roller...
1. Which has the greater kinetic energy, a heavy truck at rest or a moving roller skate? a. none of above b. heavy truck at rest c. the roller skate at rest d. The kinetic energies are equal. 2. If a sports car with a mass of 2000 kg travels down the road with a speed of 10 m/s, its kinetic energy is _______________ kg (m/s)2 a. 80000 b. 16000 c. 8000 d. 100000 e.none of above 3. A sports...
Two balls moving with the same speed of v = 0.48 m/s but in opposite directions...
Two balls moving with the same speed of v = 0.48 m/s but in opposite directions undergo a head-on collision. Ball A has mass mA = 2.6 kg and is traveling to the left, while ball B has mass mB = 1.3 kg and is traveling to the right. The balls are shown just before the collision in the figure below. (a) Which ball has the larger momentum (in magnitude) before the collision? Ball A Ball B Both balls have...
3)A bullet hits a hanging plate target at rest. The bullet gets stuck on the target...
3)A bullet hits a hanging plate target at rest. The bullet gets stuck on the target and the plate's center of mass gets raised to a height h. Consider no friction at the hanging point of the target. which statement is true? a)The initial kinetic energy of the bullet is less than the gravitational potential energy of the plate at height h. b) The initial kinetic energy of the Buller is greater than the gravitational potential energy of the plate...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT