Question

A particle has a constant acceleration of a = axi + ayj and at t =...

A particle has a constant acceleration of a = axi + ayj and at t = 0 it is at rest at the origin

What is the particle’s position as a function of time?

What is the particle’s velocity as a function of time?

What is the particle’s path, expressed as y as a function of x?

The position of a particle is given by r = (at2)i + (bt3)j + (ct-2)k, where a, b, and c are constants.

What is the velocity as a function of time?

What is the acceleration as a function of time?

Suppose a = 5.79 m/s2, b = -3.43 m/s3, and c = -84.9 ms2. What is the particle’s speed, in m/s, at t = 2.08 s?

Referring to the values given in part (c), what is the magnitude of the particle’s acceleration, in m/s2, at t = 2.08 s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
A particle moves in the x direction according to the equation x(t)=bt3+ct2+d, where b = 7.0...
A particle moves in the x direction according to the equation x(t)=bt3+ct2+d, where b = 7.0 m/s3 , c = -11 m/s2 , and d = 20 m. What is its AVERAGE ACCELERATION in the interval t = 2.0 s to t = 5.0 s?
2 kg object is measured to move with velocity and acceleration given by the formulas v(t)=A+Bt3,a(t)=3Bt2,...
2 kg object is measured to move with velocity and acceleration given by the formulas v(t)=A+Bt3,a(t)=3Bt2, where the constants A=5 m/s, and B=0.3 m/s4. (a) What is the net force acting on the object as a function of the time variable t? (b) What is the instantaneous power exerted on the object as a function of t? (c) What is the total work done on the object between the times t=0 s and t=3 s?
The acceleration of a particle that moves linearly is given as ? = - (0.1 +...
The acceleration of a particle that moves linearly is given as ? = - (0.1 + sin⁡ (? / 0.75)). The unit of acceleration is m / s2 and the unit of s is m. In t seconds, when s = 0, b and v = 0.98 values ​​are as in the table. Calculate the velocity of the particle when (i) s = -1 m, (ii) the position of the particle when the velocity is maximum (iii) the maximum velocity...
The position of a particle moving with constant acceleration is given by x(t) = 4t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 4t2 + 3t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 2 seconds and t = 7 seconds. (b) At what time during this interval is the average velocity equal to the instantaneous velocity? (c) How does this time compare to the average time for this interval? a. It is larger....
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
The equation x(t) = −bt2 + ct3 gives the position of a particle traveling along the...
The equation x(t) = −bt2 + ct3 gives the position of a particle traveling along the x axis at any time. In this expression, b = 4.00 m/s2, c = 4.80 m/s3, and x is in meters when t is entered in seconds. For this particle, determine the following. (Indicate the direction with the sign of your answer as applicable.) (a) displacement and distance traveled during the time interval t = 0 to t = 3 s displacement     distance     (b)...
The position of a particle moving with constant acceleration is given by x(t) = 2t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 2t2 + 8t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 6 seconds and t = 9 seconds.   (b) At what time during this interval is the average velocity equal to the instantaneous velocity?   
A particle has an acceleration of+6.24 m/s^ ^ 2 for 0.450 s. At the end of...
A particle has an acceleration of+6.24 m/s^ ^ 2 for 0.450 s. At the end of this time the particle’s velocity is +9.31 m/s. What is the particles average velocity at this time interval ( 0.450s )? ( your answer in m/s )