Question

5- The heat rate (Q) transferred through a metal rod depends on the thermal conductivity (K)...

5- The heat rate (Q) transferred through a metal rod depends on the thermal conductivity (K) of the metal, the cross-sectional area of the rod (A) and the temperature gradient (Y) across the rod. Find the relation by the use of the dimensional analysis taking the units of (K) (W/mK).

Homework Answers

Answer #1

We can write the dimensional equation as,

The heat rate has units joules per second, Area has units meter^2 Temperature gradient has unit Kelvin, and thermal conductivity has unit as Joules per second per meter per Kelvin. Substituting in dimensions we get, (K is kelvin)

Comparing we get the equations as,

Solving we get,

Substituting we get the equation as,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One end of an insulated metal rod is maintained at 100 ∘C and the other end...
One end of an insulated metal rod is maintained at 100 ∘C and the other end is maintained at 0.00 ∘C by an ice–water mixture. The rod has a length of 50.0 cm and a cross-sectional area of 1.20 cm2 . The heat conducted by the rod melts a mass of 9.00 g of ice in a time of 10.0 min . Part A Find the thermal conductivity k of the metal. k = W/(m⋅K)
Gas with a thermal conductivity of k = 0.04 W/mk and prandtl number of 0.7 is...
Gas with a thermal conductivity of k = 0.04 W/mk and prandtl number of 0.7 is flowing at anaverage velocity of 0.5 m/s through a 2 mm diameter tube at a Reynolds number of 50. The heat capacity rate for the gas flowing through the tube is 0.001 kJ/s. The inlet temperature of the gas is 20C. There is a constant heat flux of 200 W/m^2 transferred from the tube wall into the gas. a) What is the Nu at...
A 40-mm-thick plain wall of thermal conductivity 0.04 W/m-K and of temperature 304 K is exposed...
A 40-mm-thick plain wall of thermal conductivity 0.04 W/m-K and of temperature 304 K is exposed to both cold fluid and surroundings both at 298 K. The cold fluid and wall provide that the heat transfer coefficient is 10.5 W/m2-K and the emissivity of the wall is 0.83. Given that the area of the wall is 1.5m2 If the total heat transferred is 140.6987W, find the temperature of the other side of the plain wall
The thermal conductivity of a sheet of rigid,extruded insulation is k = 0.020 W/(m*K). The measured...
The thermal conductivity of a sheet of rigid,extruded insulation is k = 0.020 W/(m*K). The measured temperature difference across a 30-mm-thick sheet of the material is T1-T2=10 C. a.) Assuming 1-D, steady state conditions withouth thermal energy generation in the material, what is the heat flux through a 2 m x 3 m sheet of the insulation? b.) What would be the effect on the rate of heat transfer through the sheet if a material with a relatively higher thermal...
A scientist designs an experiment to determine the thermal conductivity of a solid round bar that...
A scientist designs an experiment to determine the thermal conductivity of a solid round bar that is made from a new metal alloy. One end of the bar is maintained at temperature of 13.8°C and the other end is maintained at a temperature of 50.2°C. The radius of the bar is 8.75 cm and the length of the bar is 84.4 cm. If the heat transfer through the bar was measured to be 500 W, find the thermal conductivity of...
5. A common problem involves the radial heat flow through a material between two concentric cylinders,...
5. A common problem involves the radial heat flow through a material between two concentric cylinders, say through the insulation between an inner pipe and its outer jacket. Consider an inner cylinder of radius r1 at temperature T1 and an outer cylinder of radius r2 at temperature T2. Show that the radial rate of heat flow per unit length, L, is given by: (1/L) dQ/dt = 2 pik(T1 – T2) / ln(r2 /r1). Assume the thermal conductivity of the material,...
Consider a large uranium plate of thickness 5 cm and thermal conductivity k = 28 W/m...
Consider a large uranium plate of thickness 5 cm and thermal conductivity k = 28 W/m K in which heat is generated uniformly at a constant rate of q˙ = 6 × 10^5 W/m^3 . One side of the plate is insulated while the other side is subjected to convection in an environment at 30◦C with a heat transfer coefficient of h = 60 W/m2 K. Considering six equally spaced nodes with a nodal spacing of 1 cm, (a) Sketch...
Two metal rods, one silver and the other gold, are attached to each other. The free...
Two metal rods, one silver and the other gold, are attached to each other. The free end of the silver rod is connected to a steam chamber, with a temperature of 1000C, and the free end of gold rod to an ice water bath, with a temperature of 00C. The rods are 5.0 cm long and have a square cross-section, 2.0 cm on a side. How much heat flows through the two rods in 60 s? The thermal conductivity of...
A heat-conducting rod, 0.90 m long and wrapped in insulation, is made of an aluminum section...
A heat-conducting rod, 0.90 m long and wrapped in insulation, is made of an aluminum section that is 0.20 m long and a copper section that is .70m long. Both sections have a cross-sectional area of .000040m2. The aluminum end and the copper end are maintained at temperatures of 30 degrees C and 230 degrees C respectively. The thermal conductivities of aluminum and copper are 205 W/m ∙ K (aluminum) and 385 W/m ∙ K (copper). What is the temperature...
A common problem involves the radial heat flow through a material between two concentric cylinders, say...
A common problem involves the radial heat flow through a material between two concentric cylinders, say through the insulation between an inner pipe and its outer jacket. Consider an inner cylinder of radius r1 at temperature T1 and an outer cylinder of radius r2 at temperature T2. Show that the radial rate of heat flow per unit length, L, is given by: (1/L) dQ/dt = 2p k(T1 – T2) / ln(r2 /r1). Assume the thermal conductivity of the material, k,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT