Question

A radioactive isotope has an activity of 8.58×104 Bq initially. After 3.85 hours the activity is...

A radioactive isotope has an activity of 8.58×104 Bq initially. After 3.85 hours the activity is 5.15×104 Bq. What is the half-life of the isotope? Tries 0/20 What is the activity after an additional 3.85 hours?

Homework Answers

Answer #1

Initial activity of the radioactive isotope = N0 = 8.58 x 104 Bq

Time period = T1 = 3.85 hours

Activity of radioactive isotope after 3.85 hours = N1 = 5.15 x 104 Bq

Decay constant =

By radioactive decay law,

-3.85 = -0.5104

= 0.1326

Half life of the isotope = T

T = 5.227 hours

Another 3.85 hours have passed.

Time period = T2 = 3.85 + 3.85 = 7.7 hours

Activity of radioactive isotope after 7.7 hours = N2

N2 = 3.09 x 104 Bq

Half-life of the isotope = 5.227 hours

Activity after an additional 3.85 hours have passed = 3.09 x 104 Bq

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has an initial activity at (t=0) of 1.50e-12 Bq. Calculate the number of nuclei that will decay in the time interval between t1=10 hours and t2=20 hours Answer is 4.60e16 but I'm not sure how. Thanks and please show work
An investigator collects a sample of a radioactive isotope with an activity of 4.8×105 Bq B...
An investigator collects a sample of a radioactive isotope with an activity of 4.8×105 Bq B q . 48 hours hour s later, the activity is 1.5×105 Bq B q . You may want to review (Page) . For help with math skills, you may want to review:. What is the half-life of the sample?
The radioactive isotope (82 Sr) has a half-life of 25.4 days. A sample containing this isotope...
The radioactive isotope (82 Sr) has a half-life of 25.4 days. A sample containing this isotope has an initial activity at (t = 0) of 4.5 x 10^8 Bq. Calculate the number of nuclei that will decay in the time interval between t1 = 34.0 hours and t2 = 50.0 hours.
A radioactive isotope has a half-life of 72.0 min. A sample is prepared that has an...
A radioactive isotope has a half-life of 72.0 min. A sample is prepared that has an initial activity of 1.40×1011 Bq. Q1: How many radioactive nuclei are initially present in the sample? Q2: How many are present after 72.0 min? Q3: What is the activity after 72.0 min? Q4: How many are present after 144 min? Q5: What is the activity after 144 min?
The radioactive isotope (95 Nb) has a half-life of 35 days. A sample containing this isotope...
The radioactive isotope (95 Nb) has a half-life of 35 days. A sample containing this isotope has an initial activity at (t = 0) of 4.50 x 10 ^8 Bq. Calculate the number of nuclei that will decay in the time interval between t1 = 30.0 hours and t2= 55.0 hours. Ans in nuclei and need it asap
A freshly prepared sample of a certain radioactive isotope has an activity of 10.4 mCi. After...
A freshly prepared sample of a certain radioactive isotope has an activity of 10.4 mCi. After 4.20 h, its activity is 8.00 mCi. (a) Find the decay constant and half-life. decay constant s-1 half-life h (b) How many atoms of the isotope were contained in the freshly prepared sample? (c) What is the sample's activity 33.7 h after it is prepared? mCi
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has an initial activity (t = 0) of 1.5x 10^12 Bq. Calculate the number of nuclei that decay in the time interval between t1 = 10 hr and t2 = 12 hr. Please show and explain work, and do not use calculus to solve it.
Radioactive decay can be used to determine the age of an object. If you know the...
Radioactive decay can be used to determine the age of an object. If you know the number of radioactive nuclei with which an object started, the number of radioactive nuclei currently present, and the half-life of the isotope, you can calculate the time since the object was created. Suppose an object was created with 3.270×109 nuclei of a particular isotope that has a half-life of 1.66×103 yr. At this point in time 1.079×109 nuclei of this particular isotope remain. What...
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay....
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay. The molar mass of 239Pu is 239.0521634 amu. The sample initially contains 10.0 g of 239Pu. (a) Calculate the number of moles of 239Pu that are left in the sample after 15 000 years. (4) (b) Determine the activity of 239Pu after 15 000 years, in units of Bq.
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay....
The radioactive plutonium isotope, 239Pu, has an half-life of 24 100 years and undergoes alpha decay. The molar mass of 239Pu is 239.0521634 amu. The sample initially contains 10.0 g of 239Pu. (a) Calculate the number of moles of 239Pu that are left in the sample after 15 000 years. (4) (b) Determine the activity of 239Pu after 15 000 years, in units of Bq.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT