Question

1. A wave travelling along a string is described by: y(x,t) = 0.00327sin(5x−60t). What is the...

1. A wave travelling along a string is described by: y(x,t) = 0.00327sin(5x−60t). What is the velocity of the wave?
2. A wave travelling along a string is described by: y(x,t) = 2sin(8.2x − 2t). What is the period of the wave?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t /.1 s)) where x is in meters and t is in seconds. a. Is the wave travelling to the right or to the left? _________ b. What is the wave frequency? __________ c. What is the wavelength? ___________ d. What is the wave speed? _________ e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...
A Gaussian wave pulse on a string is described by y(x,t) = 2.4 exp(?(x?2t)²/6), where x...
A Gaussian wave pulse on a string is described by y(x,t) = 2.4 exp(?(x?2t)²/6), where x is measured in meters, y in centimeters, and t in seconds. 2. [1pt] What is the speed of a particle located at x = 1.40 m and t = 0 s? Correct, computer gets: 1.62e+00 cm/s 3. [1pt] What is the acceleration of the same particle at t = 0 s? Answer: Last Answer: 0.069 cm/s^2 and -0.069 cm/s^2
A sine wave on a string is described by the wave function y (x, t) =...
A sine wave on a string is described by the wave function y (x, t) = 5.50 sin (0.70x-60.00t) where x and y are in meters and t in seconds. The mass per unit length of this rope is 11.00 g / m. Determine (a) the wavelength, (b) the average power transmitted by the wave. a 8.98 m, 95464.29 W b 0.10 m, 212.14 W c 0.10 m, 95464.29 W d 8.98 m, 212.14 W
A transverse wave on a string is described by y(x, t) = (0.420 mm) sin {(2.847...
A transverse wave on a string is described by y(x, t) = (0.420 mm) sin {(2.847 rad/m)[x − (66.0 m/s)t]}. What is the maximum transverse speed of a point on the string? Answer is in mm/s
A wave propagates along a string and is reflected at the free end of the string....
A wave propagates along a string and is reflected at the free end of the string. If we set the free end of the string as x=0, the wave can be described by y=0.2sin(1.5*pi*x-pi*t); here y is in unit of meters, and t is in unit of seconds. (a) What is the resultant wave equation when the reflected wave combines with the incoming wave? (b) What would be the resultant wave equation if the end of string (x=0) is not...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 1.2 m )+t/( 0.30...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 1.2 m )+t/( 0.30 s ))] , where x is in m and t is in s . Part B What is the wave speed?    v =     m/s Part C What is the wave frequency?    f =     Hz Part D What is the wave length?    =    m Part E At t = 0.75 s , what is the displacement of the string at x = 0.10 m ?     ...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and x are in meters and t is in seconds. 1) What is the speed of the wave? 0.79 m/s 1.27 m/s 0.2 m/s 4.94 m/s 0.03 m/s 2) What is its wavelength? 0.2 m 0.67 m 7.39 m 5.34 m 1.5 m 3) What is the acceleration of the string in the y direction at x=1.7 m and t=7 seconds? 3.91 m/s2 7.97 m/s2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT