Question

A 7 kg bowling ball rolls off a 20 m high building at 4 m/s. How...

A 7 kg bowling ball rolls off a 20 m high building at 4 m/s. How far from the building did it land horizontally?

Homework Answers

Answer #1

Initial horizontal velocity of bowling ball is

Inital vertical velocity of bowling ball is

Initial height of ball

Time taken by ball to reach ground is

Using kinematics equation   

In the vertical direction ( all downward vectors are taken negative)

In the horizontal direction, ( since )

Horizontal distance traveled by ball during this time is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 17-g ball bearing rolls off an 85 cm high tabletop at 1.35 m/s. Ignoring drag,...
A 17-g ball bearing rolls off an 85 cm high tabletop at 1.35 m/s. Ignoring drag, how far does the ball bearing travel horizontally before it hits the floor?
A ball is thrown horizontally from a 20m high building with a speed of 7.0 m/s....
A ball is thrown horizontally from a 20m high building with a speed of 7.0 m/s. How far from the base of the building does the ball hit the ground? Express your answer with two significant figures.
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 32.0° with respect to the initial direction of the bowling ball. ( a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the original direction) of the bowling ball. ______magnitude m/s __________direction ° counterclockwise from the original direction of the bowling ball (b) Ignoring rotation, what was...
A 6.25-kg bowling ball moving at 9.55 m/s collides with a 0.725-kg bowling pin, which is...
A 6.25-kg bowling ball moving at 9.55 m/s collides with a 0.725-kg bowling pin, which is scattered at an angle of θ = 23.5° from the initial direction of the bowling ball, with a speed of 10.1 m/s. Calculate the direction, in degrees, of the final velocity of the bowling ball. This angle should be measured in the same way that θ is. Calculate the magnitude of the final velocity, in meters per second, of the bowling ball.
A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball....
A 5.0 kg bowling ball traveling 3.0 m/s collides with an 8.0 kg stationary bowling ball. After the collision the 5.0 kg ball is deflected to the left from its original path by 30 degrees, while the 8.0 kg ball is deflected to the right at an angle of 45 degrees. What are the speeds of the two balls after the impact?
A ball is thrown horizontally from a 18m -high building with a speed of 9.0m/s ....
A ball is thrown horizontally from a 18m -high building with a speed of 9.0m/s . How far from the base of the building does the ball hit the ground? Please show all work and equations thank you!
A spherical bowling ball with mass m = 4.2 kg and radius R = 0.1 m...
A spherical bowling ball with mass m = 4.2 kg and radius R = 0.1 m is thrown down the lane with an initial speed of v = 8.1 m/s. The coefficient of kinetic friction between the sliding ball and the ground is μ = 0.28. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. 3) How long does it take the bowling ball to begin rolling without slipping? 4) How far...
Consider a bowling ball rolling without slipping up a hill. a) Find how high up this...
Consider a bowling ball rolling without slipping up a hill. a) Find how high up this inclined surface the ball rolls if the ball was rolling at 2.5 m/s at the bottom of the hill. b) Would a volleyball moving at 2.5 m/s roll further up this than a bowling ball? Explain. c) Would the bowling ball move further up the hill if it were sliding without friction instead of rolling? Explain.
A bowling ball of mass 7.23 kg and radius 10.3 cm rolls without slipping down a lane at 2.90 m/s . Calculate...
A bowling ball of mass 7.23 kg and radius 10.3 cm rolls without slipping down a lane at 2.90 m/s . Calculate its total kinetic energy. Express your answer using three significant figures and include the appropriate units
A 5.5 kg bowling ball moving at 9.55 m/s collides with a 0.875kg bowling pin, which...
A 5.5 kg bowling ball moving at 9.55 m/s collides with a 0.875kg bowling pin, which is scattered at an angle of theta = 84.5 degrees from the initial direction of the bowling ball, with a speed of 17m/s a) calculate the direction, in degrees, of the final velocity of the bowling ball. This angle should be measured in the same way that theta is. b) calculate the magnitude of the final velocity, in meters per second, of the bowling...