Question

A long thin rod of length L has a linear density λ(x)= A(L-x)^2 where x is...

A long thin rod of length L has a linear density λ(x)= A(L-x)^2 where x is the distance from the left end of the rod. 

a) What is the mass of the bar? 
b) How far is the center of mass of the bar from the left end of the bar?

Homework Answers

Answer #1

please up vote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin rod of length L has uniform linear mass density λ (mass/length). (a) Find the...
A thin rod of length L has uniform linear mass density λ (mass/length). (a) Find the gravitational potential Φ(r) in the plane that perpendicularly bisects the rod where r is the perpendicular distance from the rod center. Assume the gravitational potential at infinity is zero. (b) Find an approximate form of your expression from part (a) when r >> L. (c) Find an approximate form of your expression from part (a) when r<< L.
A thin rod of length L is non-uniformly charged. The charge density is described by the...
A thin rod of length L is non-uniformly charged. The charge density is described by the expression λ=cx, where c is a constant, λ is the charge per length, and x is the coordinate such that x=0 is one end of the rod and x=L is the other. Find the total charge on the rod and the electric potential at a field point just touching the rod at the x=0 end.
A thin glass rod of length ?has a linear charge density that is constant along the...
A thin glass rod of length ?has a linear charge density that is constant along the length of the rod. a)What is the electric potential on a charge q at a distance h above the middle of the rod? b) Using the answer from part (a), find the field very far from the rod (when h>>?). c) Using the answer from part (a), find the field very close to the rod (when h<<?).
The linear density (lamda) of a thin rod varies with position x as (lamda)=lamda0(x^3/L^3). The rod...
The linear density (lamda) of a thin rod varies with position x as (lamda)=lamda0(x^3/L^3). The rod lies along the X axis. If M is the mass of the rod and L is the total length, then, a) Find lamda0 in terms of M and L b)Find the position of the centre of mass c)Find the moment of inertia around the centre of mass. d) Now imagine the same thin rod is attached to a hinge that is allowed to rotate....
The thin, uniformly charged rod shown in the figure below has a linear charge density λ....
The thin, uniformly charged rod shown in the figure below has a linear charge density λ. Find an expression for the electric potential at P. (Use the following as necessary: ke, λ, a, b, and L.) https://www.chegg.com/homework-help/questions-and-answers/thin-uniformly-charged-rod-shown-figure-linear-charge-density--find-expression-electric-po-q8194001
The linear mass density of a thin rod is given by Lambda(l) = 2e-l lb ft^-1,...
The linear mass density of a thin rod is given by Lambda(l) = 2e-l lb ft^-1, where l is a dimensionless variable representing the length in meter. The total length of the rod is 2 m. What is the mass of the rod in the SI unit? Given: 1 ft 0.305 m, 1 lb 0.454 kg
Calculate the center of mass of a nonuniform rod of length L, whose linear density is...
Calculate the center of mass of a nonuniform rod of length L, whose linear density is p(x) = p0√x ​and the moment of inertia for this rod when the axis of rotation is located at the lighter end.
A thin rod of length l and uniform charge per unit length λ lies along the...
A thin rod of length l and uniform charge per unit length λ lies along the x axis as shown figure. (a) Show that the electric field at point P, a distance y from the rod, along the perpendicular bisector has no x component and is given by E=(2kλsinθ0)/y. (b) Using your result to (a), show that the field of a rod of infinite length is given by E=2kλ/y.
CM, 1D, extended mass: A rod of length L = 1.0 m has constant mass per...
CM, 1D, extended mass: A rod of length L = 1.0 m has constant mass per unit length λ given by LM=λ, where M is the total mass of the rod. For this problem, the parameter x is the distance from the left end of the rod. a)By observation alone, what do you think is the center of mass, cmx, of the rod (in symbols, then numbers)? This answer should be obvious. The point of what follows is to get...
The uniform thin rod in the figure below has mass M = 2.00 kg and length...
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 2.87 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. HINT An illustration shows the horizontal initial position and vertical final position...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT