Question

A thin disk with radius R has a surface charge density varying with σ = Cr....

A thin disk with radius R has a surface charge density varying with σ = Cr. C is a positive constant and r is the distance from the disk center. Find the electrical potential on the axis perpendicular to the center of the disc and at a point P about x away from the center.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk...
A total charge Q is uniformly distributed, with surface charge density, over a very thin disk of radius R. The electric field at a distance d along the disk axis is given by E where n is a normal unit vector perpendicular to the disk. What is the best approximation for the electric field magnitude E at large distances from the disk?
The charge density on a disk of radius R = 12.6 cm is given by σ...
The charge density on a disk of radius R = 12.6 cm is given by σ = ar, with a = 1.50 µC/m3 and r measured radially outward from the origin (see figure below). What is the electric potential at point A, a distance of 46.0 cm above the disk? Hint: You will need to integrate the nonuniform charge density to find the electric potential. You will find a table of integrals helpful for performing the integration.
Consider a rotating disk of radius R with uniform surface charge density σ and angular rotation...
Consider a rotating disk of radius R with uniform surface charge density σ and angular rotation speed ω. (a) show that for an annular strip of radius r, and width dr that the current dI = ωσrdr HINT: see class notes from previous week (b) Show that the magnetic field in the center of the disk is given by B = 1μ0σωR 2
A thin dielectric disk with radius a has a total charge +Q distributed uniformly over its...
A thin dielectric disk with radius a has a total charge +Q distributed uniformly over its surface (Figure 1). It rotates n times per second about an axis perpendicular to the surface of the disk and passing through its center. Find the magnetic field at the center of the disk. Find the current of the rotating ring. Express your answer in terms of some or all of the variables Q, a, r, dr, n, and the constant π
A hole of radius R is cut out from the center of a uniformly charged disk...
A hole of radius R is cut out from the center of a uniformly charged disk of radius 2R. The surface charge density σ is 25 nC/m^2. Calculate the potential on the axis of the disk at a point 0, 0, Z.
A uniformly charged disk of radius 10 cm carries a uniform charge density of 3nC/m^2 (a)...
A uniformly charged disk of radius 10 cm carries a uniform charge density of 3nC/m^2 (a) Calculate the electric potential (relative to zero at infinity) at a point A, situated on the symmetry axis of the disk that is perpendicular to the disk face, at a distance of 1 mm from the disk. (b) Calculate the electric potential difference ΔV between point A and another point on the same axis at a distance 2 mm from the disk. (c) Compare...
The surface of a circular disk is charged uniformly. The magnitude of the electric field produced...
The surface of a circular disk is charged uniformly. The magnitude of the electric field produced by the disk on the surface is measured 3.00×105 N/C at its center. a.) Find the surface charge density of the disk. b.) At the point on the central axis perpendicular to the disk, 10.0 cm away from the center of the disk, the magnitude of the electric field is measured 1.00×105 N/C. Estimate the total charge of the disk. c.) Find the magnitude...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q...
Physics 207 Quiz 3 A)a ring-shaped thin wire of radius R carries a total charge Q uniformly distributed around it.find the electric field E at a point P that lies on the axis of he ring at a distance x from its center. B) According to your formula, how much is the field at the center of the ring C)How much is the field when x is much larger than R?
In the figure, a small disk of radius r=1.00 cm has been glued to the edge...
In the figure, a small disk of radius r=1.00 cm has been glued to the edge of a larger disk of radius R=6.00 cm so that the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point O at the center of the larger disk. The disks both have a uniform density (mass per unit volume) of 1.40 × 103 kg/m3 and a uniform thickness of 7.00 mm. What is the rotational inertia...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT