A sphere of radius r0 = 22.0 cm and mass m = 1.20kg starts from rest and rolls without slipping down a 34.0 degree incline that is 12.0 m long.
Part A: Calculate its translational speed when it reaches the bottom. (m/s)
Part B: Calculate its rotational speed when it reaches the bottom. (rad/s)
Part C: What is the ratio of translational to rotational kinetic energy at the bottom? (Ktr/Krot)
Part D: Does your answer in part A depend on mass or radius of the ball?
a. Depends on mass
b. doesnt depend on mass and radius
c. depends on mass and radius
d. depends on radius
Part E: Does your answer in Part B depend on mass or radius of the ball?
a. Depends on mass
b. doesnt depend on mass and radius
c. depends on mass and radius
d. depends on radius
Part F: Does your answer in part C depend on mass or radius of the ball?
a. Depends on mass
b. doesnt depend on mass and radius
c. depends on mass and radius
d. depends on radius
A.
Use law of conservation of energy
MEi =MEf
KEi+PEi =KEf+PEf
½*mvi2+mghi=½*mvfTrans2+=½*IsphereωRot2+mghf
0+mghi=½*mvfTrans2+½*2/5*mr02*(vfTrans/r0)2+mghf
0+ghi=½*vfTrans2+½*2/5*mr02*(vfTrans/r0)2+ghf
[ghi-ghf] ==½*vfTrans2+½*2/5*(vfTrans)2
[ghi-ghf] ==7/10*vfTrans2
vfTrans=sqrt[10/7*(ghi-ghf)]
vfTrans=sqrt[10/7*g(hi-hf)]……(1)
Plug values,
vfTrans=sqrt[10/7*9.8(12.0m)]
vfTrans=12.96m/s
B.
ω=vfTrans /R=(12.96m/s)/(0.22m)=58.91rad/s
C.
Ktr/Krot=(1/2*mvfTrans2)/(IsphereωRot2)= (1/2*mvfTrans2)/(½*2/5*mr02*(vfTrans/r0)2)
Ktr/Krot=5/2
D.
From eqn(1),
vfTrans=sqrt[10/7*g(hi-hf)]
Thus, vfTrans does not depend on mass and radius
Get Answers For Free
Most questions answered within 1 hours.