Question

Four straight rods are each 1.0m, with masses 1.0 kg, 2.0kg, 3.0 kg and 4.0kg. The...

Four straight rods are each 1.0m, with masses 1.0 kg, 2.0kg, 3.0 kg and 4.0kg. The rods form a square in the xy-plane so that the 1.0kg rod is placed along the x-axis with its left end at the origin. The 2.0kg rod is placed along the y-axis with its lower end in the origin. The 3.0kg rod is parallell with the x-axis.

a) Find the square's center of mass (draw a figure).

b) Calculate the square's moment of inertia around an axis through the center of the square, parallell with the z-axis.

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 a) Calculate the total moment of inertia of the system b) What is...
A solid circular disk has a mass of 1.2 kg and a radius of 0.19 m....
A solid circular disk has a mass of 1.2 kg and a radius of 0.19 m. Each of three identical thin rods has a mass of 0.13 kg. The rods are attached perpendicularly to the plane of the disk at its outer edge to form a three-legged stool (see the drawing). Find the moment of inertia of the stool with respect to an axis that is perpendicular to the plane of the disk at its center. (Hint: When considering the...
Three small balls of mass 3.6 kg, 1.7 kg, and 3.8 kg are connected by light...
Three small balls of mass 3.6 kg, 1.7 kg, and 3.8 kg are connected by light rods laying along the y-axis. The rod connecting the first and second balls is 4.1 m long and the rod connecting the second and third balls is 2.5 m. The entire system rotates around the x-axis, which is between the first and second balls and a distance 2.1 m from the first ball, at a rotational speed 1.8 s-1 (a) What is the moment...
Three small balls of mass 4.9 kg, 1.7 kg, and 3.3 kg are connected by light...
Three small balls of mass 4.9 kg, 1.7 kg, and 3.3 kg are connected by light rods laying along the y-axis. The rod connecting the first and second balls is 4.8 m long and the rod connecting the second and third balls is 1.5 m. The entire system rotates around the x-axis, which is between the first and second balls and a distance 3 m from the first ball, at a rotational speed 1.6 s-1 What is the moment of...
A weightlifter's barbell consists of two identical spherical masses each with a radius 0.17m and mass...
A weightlifter's barbell consists of two identical spherical masses each with a radius 0.17m and mass of 50 kg. The weights are connected by a 0.96 m steel rod with a mass of 12 kg. Find the moment of Inertia of the barbell through its axis of center.
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 4.80 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.) Two masses...
Three small spherical masses are located in a plane at the positions shown below. dynamically generated...
Three small spherical masses are located in a plane at the positions shown below. dynamically generated plot The masses are Q=0.300 kg, R=0..600 kg, and S=0.500 kg. Calculate the moment of inertia (of the 3 masses) with respect to an axis perpendicular to the xy plane and passing through x=0 and y=-3. [Since the masses are of small size, you can neglect the contribution due to moments of inertia about their centers of mass.] i cant figure out how to...
A uniform thin rod of length 0.45 m and mass 6.5 kg can rotate in a...
A uniform thin rod of length 0.45 m and mass 6.5 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is a rest when a 3.0-g bullet traveling in the horizontal plane of the rod is fired into one end of the rod. As viewed from above, the direction of the bullet velocity makes an angle of 60° with the rod (see the figure). If the bullet lodges in the rod and the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT